Effect of Commercial or Bovine Yeasts on the Performance and Blood Variables of Broiler Chickens Intoxicated with Aflatoxins

W. Suksombat* P. Suksombat and R. Mirattanaphrai

Abstract—The effects of commercial or bovine yeasts on the performance and blood variables of broiler chickens intoxicated with aflatoxin were investigated in broilers. Four hundred eighty broilers (Arbor Acres; 3-wk-old) were randomly assigned to 4 groups. Each group (120 broiler chickens) was further randomly divided into 6 replicates of 20 chickens. The treatments were control diet without additives (treatment 1), 250 ppb AFB1 (treatment 2), commercial yeast, Saccharomyces cerevisiae (treatment 3) and bovine yeast, Saccharomyces cerevisiae, (treatment 4). Complete randomized design (CRD) was used in the experiment. Feed consumption and body weight were recorded at every five-day period. On day 42, carcass compositions were determined from 30 birds per treatment. While chicks were sacrificed, 3-4 ml blood sample was taken and stored frozen at (-20°C) for serum chemical analysis to determine effects of consumption of diets on blood chemistry (total protein, albumin, glucose, urea, cholesterol and triglycerides). There were no significant differences in ADFI among the treatments (P>0.05). However, BWG, FCR and mortality were highly significantly different (P<0.01) between treatments. ADG was significantly reduced (P<0.05) by aflatoxin but was unaffected by aflatoxin supplemented with either commercial or bovine yeasts (P>0.05). In terms of carcass portions, percentage of carcass was unaffected by the treatments, however, percentages of drumstick were reduced by aflatoxin and aflatoxin supplemented commercial yeast. Abdominal fat was significantly reduced (P<0.01) when commercial or bovine yeasts were added to the aflatoxin contaminated diets. Percentage of liver were significantly increased by aflatoxin but was unaffected when yeasts were added to the diets. Blood chemical parameters, i.e. albumin, blood urea nitrogen and glucose were unaffected the treatments, while total protein, cholesterol and triglycerides were significantly decreased by aflatoxin. When yeasts were supplemented, such effect was not differ from the control. It is clearly indicated in the present study that supplementation of either commercial or bovine yeasts had beneficial effects on performance of broiler chickens intoxicated with aflatoxins.

Keywords—Aflatoxin, Commercial yeast, Bovine yeast, Growth performance, Blood chemical parameters, Broilers

I. INTRODUCTION

AFLATOXINS are group of closely related mycotoxin that can be produced by three species of Aspergillus; A. flavus, A. parasiticus and the rare A. romius growing on a variety of feedstuffs, mainly maize, peanuts and cottonseed [1]. Aflatoxins B1 (AF B1) is produced by certain strains of fungi in greater quantities than in others [2]. Among aflatoxins, AFB1 is an extremely hepato-toxic and carcinogenic compound [3]. Aflatoxin B1 is more predominantly found than others and is the most toxic type to poultry and frequently contaminates animal’s feeds at low levels.

Aflatoxins (a structurally similar group of polysubstituted coumarins) have been recognized as important mycotoxins due to their toxicity and their occurrence as natural contaminants of feeds. Aflatoxin B1 (AFB1) and 3 structurally similar compounds (AFB2, AFG1, and AFG2) have been detected as contaminants of crops before harvesting and drying, in storage, and after processing and manufacturing. The frequent contamination of agricultural commodities with aflatoxin and the chronic exposure of poultry to these toxins can greatly affect the profitability of poultry production. Consequently, large-scale, practical, and cost-effective methods for detoxifying aflatoxin-containing feedstuffs currently are in great demand. Aflatoxins cause a variety of effects in poultry including decreased feed utilization, poor growth, egg production and break in immunity. Even small amounts of AFB1 in feeds may cause poor growth, hatchability and increase susceptibility to disease. Liver damage and bleeding decreased egg production and overall performance and suppressed immunity have been noted in animals consuming relatively low dietary levels of aflatoxin [2] [4] [5]. High dosages cause acute loss of appetite, depression, haemorrhage, diarrhoea and death. Susceptibility of animals to aflatoxins varies with species and age. Among poultry, ducks and turkey pouls are more susceptible for aflatoxicosis than any other species. In general, younger animals are more susceptible than adult animals. Broilers are more susceptible than layers. Several nutritional, physical, chemical and biological approaches have been proposed to detoxify mycotoxin contaminated feed and feedstuffs. There has been a great deal of interest in using natural biological products to reduce the bioavailability of mycotoxins in animal production systems. The potential usefulness of these types of materials was first demonstrated in poultry in the early 1990s. Initially used as a nutritional aid and a growth promoter, a commercially
available viable yeast culture preparation based on Saccharomyces cerevisiae strain 1026 (Yea-Sacc), was found to improve hatchability [6] and broiler body weights [7]. Live yeast contains numerous enzymes that could be released into the intestine and aid existing enzymes in the digestive tract in the digestion of feed. Also, yeast contains vitamins and other nutrients that may produce beneficial production responses [8]. In addition, [9] and [10] showed that yeast additives reduce the toxic effects of Alfatoxin. While, [11] and [12] revealed that yeast can improve immune response of birds. Investigators attributed the yeast culture preparation’s ability to alter growth patterns of poultry to its ability to bind toxins found in the diets used in these studies. In controlled studies, viable yeast cultures added to broiler diets containing aflatoxin resulted in significant improvement in weight gain and enhanced immune response [13]. Additionally, in vitro studies clearly established up to 90% adsorption of aflatoxin to yeast cells in a dose-dependent fashion [14]. The present study aimed to determine the effect of live yeast supplementation on growth performance, feed conversion efficiency, carcass composition and blood chemical parameters in broiler chickens.

II. MATERIALS AND METHODS

A. Experimental Animals

All experiments were conducted in accordance with the principles and guidelines approved by the Suranaree University of Technology Animal Care and Use committee which followed Guidelines for the Care and Use of Agricultural Animals in Agricultural Research and Teaching. Four hundred eighty broilers (Arbor Acres; 3-wk-old) were assigned to the following treatment groups. Control diet without additives (treatment 1), 250 ppb AFB1 (treatment 2), commercial yeast (CY 2.5 x 10^7 CFU/g) + 250 ppb AFB1 (treatment 3) and bovine yeast (BY 2.5 x 10^7 CFU/g + 250 ppb AFB1 (treatment 4). The respective aflatoxin and other treatments. Similar results were also reported [2] and significant differences between means were compared by Duncan’s New Multiple Range Test (DMRT) according to the methods previously described by [18].

D. Statistical Analysis

The observed effects between treatment groups were statistically analyzed by ANOVA in a completely randomized design [17] and significant differences between means were compared by Duncan’s New Multiple Range Test (DMRT) according to the methods previously described by [18].

II. RESULTS AND DISCUSSION

A. Broiler Performance

Ingredient and calculated nutrient composition of finisher diets are presented in Table 1. The calculated nutrient composition is based on NRC recommendation [19]. The effects of commercial or bovine yeasts on body weight gain (BWG), ADG, ADFI, feed conversion ratio (FCR) and mortality are shown in Table (2). As compared to control group, the mold-contaminated diet chicks showed no significant difference on ADFI during 22-42 d (p>0.05). Consumption of contaminated diet alone resulted in reduction in BWG and poorer FCR when compared to the control diet and other treatments. Similar results were also reported [2] and significant decreased body weight gain in broiler chicken fed contaminated feed at both 78 and 170 µg aflatoxin/kg diets. In the present study, either commercial yeast or bovine yeast supplementation to the contaminated diet significantly improved mortality, BWG, FCR (p<0.01) and ADG (p<0.05) during 22-42 d. The positive response on mortality, BWG, FCR and ADG as a result of adding either commercial yeast or bovine yeast may be due to that mannan oligosaccharides (MOS) from yeast cell walls have been researched with respect to their value in immune modulation [21] [22] and in reduction of intestinal pathogen colonization [23]. Some research studies.
suggest that MOS may improve growth performance in young pigs [24] [25]. Furthermore, yeast can inhibit pathogenic bacteria as reported by [26].

Table I

<table>
<thead>
<tr>
<th>Ingredient and Calculated Nutrient Composition of Basal Diets (As-Fed Basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>Ground corn</td>
</tr>
<tr>
<td>Soybean meal</td>
</tr>
<tr>
<td>Fish meal</td>
</tr>
<tr>
<td>Sunflower meal</td>
</tr>
<tr>
<td>Soybean oil</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
</tr>
<tr>
<td>Premix</td>
</tr>
</tbody>
</table>

Metabolizable energy (kcal/kg): 3267

Crude protein (%): 20.1

Crude fat (%): 7.94

Crude fiber (%): 9.36

Calcium (%): 0.99

Available phosphorus (%): 0.60

Arginine (%): 1.30

Lysine (%): 1.11

Methionine + cystine (%): 0.72

Tryptophan (%): 0.25

Valine (%): 1.05

Threonine (%): 0.79

Threonine (%)

Methionine + cystine (%)

Tryptophan (%)

Valine (%)

Threonine (%)

B. Slaughter Data

The percentages of carcass, drumstick, thigh, breast, liver and abdominal fat of chicks fed commercial yeast or bovine yeast are presented in Table 3. The data showed that no significant differences (P>0.05) were observed on body weight, percentages of carcass, thigh and breast as a result of adding yeasts to growing broiler diet. However, broilers fed control or yeast supplemented diets showed that percentages of liver and abdominal fat were increased when compared with those chicks fed aflatoxin contaminated diet. There were no significant differences in these parameters between commercial and bovine yeast supplemented groups. The lack of change in BW response to aflatoxin was perhaps the chicks used in the present study, when 22 d old, were more resistant to intoxication, as demonstrated by [27]. Increase in percentage of liver reflected an increase in relative liver weight. Reference [28] found increased liver weight with addition of aflatoxin, however, the weight of liver decreased with addition of MOS to the aflatoxin added diet. This observation supports the earlier works of [3] [29] [30].

C. Blood parameters (Total serum protein, serum albumin, cholesterol, triglycerides, urea nitrogen and glucose)

The main effects of aflatoxin are related to liver damage. The inhibition of protein synthesis in the liver [31] and changes of serum variables such as cholesterol and triglyceride concentrations [32]. Aflatoxin has been shown to cause inhibition of protein synthesis [33]. Total protein levels in the serum proved to be sensitive indicators of aflatoxicosis in broilers. Reference [34] reported that serum total protein as a result of aflatoxicosis was decreased. The present results are consistent with the finding by [35], who observed a decrease in serum uric acid and cholesterol in birds fed a contaminated diet. In the present study, the total protein for broilers fed diets containing yeasts and aflatoxin did not completely return to normal values, showing an inhibition of protein synthesis. These results are parallel with the finding reported by [33], who observed a decrease in total protein and an inhibition in protein synthesis during the aflatoxicosis in poultry. Furthermore, data showed that albumin, blood urea nitrogen and blood glucose were unaffected by the treatments. Cholesterol and triglycerides were reduced by adding aflatoxin to broiler diet, however, supplementing commercial yeast or bovine yeast to broiler diets showed no significant different in these parameters when compared with the control diet. Similar
result was also reported by [36] who found a reduction in serum triglyceride in broiler chicken received aflatoxin. However, [37] reported that in aflatoxin intoxicated laying hen, cholesterol concentrations were not significantly different from control values, but triglyceride concentrations decreased in aflatoxin intoxicated group. Thus, it can be concluded in the present study that either commercial or bovine yeast could be used to enhance performance of aflatoxin intoxicated broilers.

<table>
<thead>
<tr>
<th>TABLE IV</th>
<th>EFFECT OF COMMERCIAL OR BOVINE YEAST SUPPLEMENTATION ON BLOOD CHEMICAL PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>Control</td>
</tr>
<tr>
<td>Total protein (g/dL)</td>
<td>3.37a</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>1.50</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>132.89a</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>105.94a</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>1.62</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

Authors would like to express special thanks to University’s Poultry Farm, the Center for Scientific and Technological Equipment for their great support. Financial support was provided by the Institute of Research and Development, Suranaree University of Technology.

REFERENCES

copper on performance and immunocompetence of early-weaned pigs,”

P. Lyons and K. A. Jacques (ed.) Biotechnology in the Feed Industry:

supplemented feed on Salmonella and Campylobacter populations in

[27] G. M. Lanza, A. Washburn and R. D. Wyatt, “Strain variation in
2686-2691, December, 1980.

glucomannan on performance of broiler chickens,” Int. J. Agric. Biol.,

glucosmanan on performance and organ morphology, serum
biochemistry and haematology in broilers exposed to individual and
combined mycotoxicosis (aflatoxin, ochratoxin & T-2 toxin),” British

Ganpule, “Efficacy of esterified glucosmanan to counteract
mycotoxicosis in naturally-contaminated feed on performance, serum

in broiler chickens and its reduction by activated charcoal” Res. Vet.

“Chromium picolinate addition to diets of growing-finishing pigs,” J

[33] H. T. Tung, R. D. Wyatt, P. Thaxton and P. B. Hamilton,

Huff, “Diminution of aflatoxicosis in growing chickens by the dietary

Rottinghaus. “Efficacy of various inorganic sorbents to reduce the

Swanson, T. D. Phillips and C. R. Creger, “Individual and combined
effects of aflatoxin and deoxynivalenol (DON, vomitoxin) in broiler

and G. Chavez, “Variations of clinical biochemical parameters of laying
hens and broiler chickens fed aflatoxin-containing feed,” Avian Pathol.