Induced Acyclic Graphoidal Covers in a Graph

K. Ratan Singh, P. K. Das

Abstract—An induced acyclic graphoidal cover of a graph G is a collection ψ of open paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ, and every member of ψ is an induced path. The minimum cardinality of an induced acyclic graphoidal cover of G is called the induced acyclic graphoidal covering number of G and is denoted by $\eta_{ia}(G)$ or η_{ia}. Here we find induced acyclic graphoidal cover for some classes of graphs.

Keywords—Graphoidal cover, Induced acyclic graphoidal cover, Induced acyclic graphoidal covering number.

I. INTRODUCTION

A graph is a pair $G = (V, E)$, where V is the set of vertices and E is the set of edges. Here, we consider only nontrivial, simple, finite and connected graphs. The order and size of G are denoted by p and q respectively. The concept of graphoidal cover was introduced by B.D. Acharya and E. Sampathkumar [1] and the concept of induced acyclic graphoidal cover was introduced by S. Arumugam [4]. The reader may refer [3], [5] and [6] for the terms not defined here.

Definition 1.1. [1] A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions:

(i) Every path in ψ has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in ψ.

(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$.

Definition 1.2. [4] An induced graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions:

(i) Every path in ψ has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in ψ.

(iii) Every edge of G is in exactly one path in ψ.

(iv) Every member of ψ is an induced cycle or an induced path.

The minimum cardinality of an induced graphoidal cover of G is called the induced graphoidal covering number of G and is denoted by $\eta_{i}(G)$ or η_{i}.

Definition 1.3. [2] A graphoidal cover ψ of a graph G is called an acyclic graphoidal cover if every member of ψ is a path. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by $\eta_{a}(G)$ or η_{a}.

Definition 1.4. [4] A graphoidal cover ψ of a graph G is called an induced acyclic graphoidal cover if every member of ψ is an induced path. The minimum cardinality of an induced acyclic graphoidal cover of G is called the induced acyclic graphoidal covering number of G and is denoted by $\eta_{ia}(G)$ or η_{ia}.

Definition 1.5. Let ψ be a collection of internally edge disjoint paths in G. A vertex of G is said to be an internal vertex of ψ if it is an internal vertex of some path in ψ, otherwise it is called an external vertex of ψ.

II. MAIN RESULTS

The following result for graphoidal covering number also holds for induced acyclic graphoidal covering number.

Theorem II.1. [3] For any induced acyclic graphoidal cover ψ of a (p,q)-graph G, let ℓ_{ψ} denote the number of external vertices of ψ and let $t = \min \ell_{\psi}$, where the minimum is taken over all induced acyclic graphoidal covers ψ of G then $\eta_{ia}(G) = q - p + t$.

Corollary II.2. For any graph G, $\eta_{ia}(G) \geq q - p$. Moreover, the following are equivalent

(i) $\eta_{ia}(G) = q - p$.

(ii) There exists an induced acyclic graphoidal cover of G without external vertices.

(iii) There exists a set Q of internally disjoint and edge disjoint induced acyclic graphoidal path without exterior vertices (From such a set Q of paths, the required induced acyclic graphoidal cover can be obtained by adding the edges which are not covered by the paths in Q).

Corollary II.3. If there exists an induced acyclic graphoidal cover ψ of a graph G such that every vertex of G with degree at least two is internal to ψ, then ψ is a minimum induced acyclic graphoidal cover of G and $\eta_{ia}(G) = q - p + n$, where n is the number of pendant vertices of G.

K. Ratan Singh (e-mail: karamratan78@gmail.com) and P. K. Das (e-mail: pddnu@gmail.com) are with the North Eastern Regional Institute of Science and Technology, Nainital - 263 109, INDIA.
Corollary II.4. Since every graphoidal cover of a tree \(T \) is also an induced acyclic graphoidal cover of \(T \), we have \(\eta_{ia}(T) = n - 1 \), where \(n \) is the number of pendant vertices of \(T \).

Theorem II.5. Let \(G \) be a complete graph \(K_p \). Then \(\eta_{ia}(K_p) = q \).

Proof: The result follows from the fact that every member in an induced acyclic graphoidal cover \(\psi \) of \(K_p \) is an edge.

Theorem II.6. Let \(G \) be a complete bipartite graph \(K_{m,n} \), then

(i) \(\eta_{ia}(K_{1,n}) = n - 1, \ n \geq 2 \).

(ii) \(\eta_{ia}(K_{2,n}) = q - p + 2, \ n \geq 2 \).

(iii) \(\eta_{ia}(K_{3,n}) = \begin{cases} q - p + 2, & \text{if } n = 3, 4, 5; \\ q - p, & \text{if } n \geq 6. \end{cases} \)

(iv) \(\eta_{ia}(K_{m,n}) = q - p \) if \(m, n \geq 4 \).

Proof: Let \(X = \{v_1, v_2, v_3, \ldots, v_n\} \) and \(Y = \{w_1, w_2, w_3, \ldots, w_n\} \) be a bipartition of \(K_{m,n} \).

(i). Since \(K_{1,n} \) is a tree with \(n \) pendant vertices, \(\eta_{ia}(K_{1,n}) = n - 1 \).

(ii). When \(n \geq 2 \). Let \(X = \{v_1, v_2\} \) and \(Y = \{w_1, w_2, w_3, \ldots, w_n\} \) be a bipartition of \(K_{2,n} \).

Let \(P_i = (v_i, w_i, v_{i+1}), i = 1, 2, \ldots, n \). Then \(\psi = \{P_i\} \) is an induced acyclic graphoidal cover of \(K_{2,n} \) and \(|\psi| = q - p + 2 \). Hence \(\eta_{ia}(K_{2,n}) \leq q - p + 2 \).

(iii). When \(n = 3, 4, 5 \). Let \(X = \{v_1, v_2, v_3\} \) and \(Y = \{w_1, w_2, w_3, \ldots, w_n\} \) be a bipartition of \(K_{3,n} \).

Let \(P_i = (v_i, w_i, v_{i+1}, v_{i+2}), i = 1, 2, 3, 4, 5 \) and \(Q = (w_1, v_1, w_2) \). Then \(\psi = \{P_1, Q\} \) is an induced acyclic graphoidal cover of \(K_{3,n} \) and \(|\psi| = q - p + 2 \). Hence \(\eta_{ia}(K_{3,n}) \leq q - p + 2 \).

(iv). When \(n \geq 6 \). Let \(X = \{v_1, v_2, v_3\} \) and \(Y = \{w_1, w_2, w_3, \ldots, w_n\} \) be a bipartition of \(K_{3,n} \).

Let \(P_i = (v_i, w_i, v_{i+1}, v_{i+2}), i = 1, 2, 3, 4, 5 \) and \(Q = (w_1, v_1, w_2) \). Then \(\psi = \{P_1, Q\} \) is an induced acyclic graphoidal cover of \(K_{3,n} \) and \(|\psi| = q - p + 2 \). Hence \(\eta_{ia}(K_{3,n}) = q - p + 2 \).

Theorem II.7. For the wheel \(W_p = K_1 + C_{p-1} \), we have

\(\eta_{ia}(W_p) = \begin{cases} 6 & \text{if } p = 4; \\ p & \text{if } p \geq 5. \end{cases} \)

Proof: Let \(V(W_p) = \{v_0, v_1, \ldots, v_{p-1}\} \) and \(E(W_p) = \{v_0v_1 : 1 \leq i \leq p - 1\} \cup \{v_1v_{i+1} : 1 \leq i \leq p - 2\} \cup \{v_1v_{p-1}\} \).

If \(p = 4 \) then \(W_4 = K_4 \) and so \(\eta_{ia}(W_4) = 6 \).

If \(p \geq 5 \). Let \(P_1 = (v_1, v_2, v_3), P_2 = (v_1, v_0, v_3), P_3 = (v_3, v_4, \ldots, v_{p-1}, v_1) \).

Then \(\psi = \{P_1, P_2, P_3\} \) is an induced acyclic graphoidal cover of \(W_p \) and \(|\psi| = p \).

Hence, \(\eta_{ia}(W_p) \leq p \). On the other hand, for any induced acyclic graphoidal cover \(\psi \) of \(W_p \) at least two vertices are external vertices so that \(t \geq 2 \).

Hence \(\eta_{ia}(W_p) \geq q - p + 2 = p \). Thus \(\eta_{ia}(W_p) = p \).

Theorem II.8. If \(G \) is a unicyclic graph with \(n \) pendant vertices and the unique cycle \(C_k \), and \(j \) denote the number of vertices of degree greater than or equal to 3 in \(C_k \) then when

(i) \(k = 3 \)

\(\eta_{ia}(G) = \begin{cases} 3 & \text{if } j = 0; \\ n + 2 & \text{if } j = 1; \\ n + 1 & \text{if } j = 2; \\ n & \text{otherwise.} \end{cases} \)

(ii) \(k \geq 4 \)

\(\eta_{ia}(G) = \begin{cases} 2 & \text{if } j = 0; \\ n + 1 & \text{if } j = 1; \text{ or } j = 2 \text{ and the two vertices of degree } \geq 3 \text{ are adjacent in } C_k; \\ n & \text{otherwise.} \end{cases} \)

Proof: Let \(C_k = \{v_1, v_2, v_3, \ldots, v_k, v_1\} \) be the unique cycle in \(G \).

(i). Case(a). When \(j = 0 \) then \(G = C_3 \) so that \(\eta_{ia}(G) = 3 \).

Case(b). When \(j = 1 \). Let \(v_1 \) be the unique vertex of \(C_3 \) with \(\deg \geq 3 \) in \(C_3 \). Let \(T = G - \{v_1\} \) be the tree with \(n + 1 \) pendant vertices so that \(\eta_{ia}(T) = n \). Let \(v_1 \) be a minimum induced acyclic graphoidal cover of \(T \). Then \(\psi = \{v_1, v_2, v_3\} \) is an induced acyclic graphoidal cover of \(G \) and \(|\psi| = n + 2 \).

On the other hand, for any induced acyclic graphoidal cover \(\psi \) of \(G \), the \(n \) pendant vertices of \(G \) and at least two vertices in \(C_k \) are external vertices so that \(t \geq n - 2 \).

Hence, \(\eta_{ia}(G) \leq q - p + t \geq q - p + n + 2 = n + 2 \).

Case(c). When \(j = 2 \). Let \(v_1 \) and \(v_2 \) be the vertices of degree \(\geq 3 \) in \(C_3 \). Let \(T = G - \{v_1v_2\} \) be the tree with \(n \) pendant vertices so that \(\eta_{ia}(T) = n - 1 \). Let \(v_1 \) be a minimum induced acyclic graphoidal cover of \(T \). Then \(\psi = \{v_1, v_2\} \) is an induced acyclic graphoidal cover of \(G \) and \(|\psi| = n + 1 \).

Hence, \(\eta_{ia}(G) \leq n + 1 \). On the other hand, for any induced
acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex in C_k are external vertices so that $t \geq n + 1$. Hence, $\eta_{ia}(G) = q - p + t \geq q - p + n + 1 = n + 1$.

Case(d). When all the vertices in C_k are of $\deg \geq 3$. Let $T = G - \{(v_1, v_2)\}$ be the tree with n pendant vertices. Let T_1 be the induced subgraph of T formed by v_2 along with vertices connected to v_2 such that v_3 occurs as an pendant vertex. Then T_1 has $n_1 + 1$ pendant vertices so that $\eta_{ia}(T_1) = n_1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of T_1. Also, $T_2 = T - T_1$ is also a tree with n_2 pendant vertices so that $n_1 + n_2 = n$ and $\eta_{ia}(T_2) = n_2 - 1$. Let ψ_2 be a minimum induced acyclic graphoidal cover of T_2. Then $\psi = \psi_1 \cup \psi_2 \cup \{(v_1, v_2)\}$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{ia}(G) = n$.

(ii) Case(a). When $j = 0$, then $G = C_k$ so that $\eta_{ia}(G) = 2$.

Case(b). When $j = 1$. Let v_1 be the unique vertex of $\deg \geq 3$ in C_k. Let $P = \{(v_1, v_k, v_{k-1}, \ldots, v_4, v_3)\}$ be an induced path of length at least 2. Then $T = G - P$ is a tree with $n + 1$ pendant vertices so that $\eta_{ia}(T) = n$, with ψ_1 as a minimum induced acyclic graphoidal cover. Then $\psi = \psi_1 \cup P$ is an induced acyclic graphoidal cover of G and so $|\psi| = n + 1$. Hence, $\eta_{ia}(G) \leq n + 1$. Further, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex in C_k are external vertices so that $t \geq n + 1$. Hence, $\eta_{ia}(G) = q - p + t \geq q - p + n + 1 = n + 1$.

When $j = 2$ and the two vertices of $\deg \geq 3$ are adjacent vertices in C_k, the proof is similar to that for $j = 1$.

Case(c). When $j = 2$. Suppose v_1, v_3 are the two non adjacent vertices of $\deg \geq 3$. Let $P = \{(v_1, v_k, v_{k-1}, \ldots, v_4, v_3)\}$ be an induced path of length at least 2. Then $T = G - P$ is a tree with n pendant vertices so that $\eta_{ia}(T) = n - 1$, with ψ_1 as a minimum induced acyclic graphoidal cover. Then $\psi = \psi_1 \cup P$ is an induced acyclic graphoidal cover of G such that every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{ia}(G) = n$.

When $j \geq 3$. Take two non adjacent vertices v_1 and v_j of $\deg \geq 3$ in C_k, let T be the induced subgraph of G containing all vertices on one side of the arc v_1 and v_j of G such that these two vertices appear as pendant vertices and T has $n_1 + 2$ pendant vertices so that $\eta_{ia}(T_1) = n_1 + 1$. Let ψ_1 be the minimum induced acyclic graphoidal cover of T. Then $T' = G - T$ is a tree with n_2 pendant vertices so that $\eta_{ia}(T_2) = n_2 - 1$. Let ψ_2 be the minimum induced acyclic graphoidal cover of T. Then $\psi = \psi_1 \cup \psi_2$. Let ψ_3 be an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{ia}(G) = n$.

Theorem II.9. Let G be a bicyclic graph with n pendant vertices containing a $U(l; m)$ and j be the number of vertices of degree greater than or equal to 3 in $U(l; m)$. Then when

(ii) $l, m \geq 3$

$\eta_{ia}(G) = \begin{cases} 5 & \text{if } G = U(l; m); \\ n + 6 - j & \text{if } 1 \leq j \leq 5. \end{cases}$

(ii) $l = 3, m \geq 4$

\[
\eta_{ia}(G) = \begin{cases} 4 & \text{if } G = U(l; m); \\ n + 4 & \text{if } j = 1; \text{ or } j = 2 \text{ and the other vertex of } \deg \geq 3 \text{ is adjacent to } u_0 \text{ in } C_m; \\ n + 3 & \text{if } j = 2 \text{ and } u_0 \text{ is adjacent to the other } \text{vertex of } \deg \geq 3 \text{ in } C_l; \text{ or } j \geq 2 \text{ and all } \text{vertices of } \deg \geq 3 \text{ are in } C_m; \\ n + 2 & \text{if } j = 3 \text{ in } C_l; \text{ or } j = 4 \text{ and } C_m \text{ has only one vertex other than } u_0 \text{ of } \deg \geq 3 \text{ which is adjacent to } u_0; \\ n + 1 & \text{otherwise.} \end{cases}
\]

(iii) $l, m \geq 4$

\[
\eta_{ia}(G) = \begin{cases} 3 & \text{if } G = U(l; m); \\ n + 3 & \text{if } j = 1; \text{ or } j = 2 \text{ and the other vertices of } \deg \geq 3 \text{ is adjacent to } u_0; \text{ or } j = 3 \text{ and } \text{the other vertices of } \deg \geq 3 \text{ are adjacent to } u_0 \text{ in } C_m; \\ n + 2 & \text{if } j \geq 2 \text{ and all vertices of } \deg \geq 3 \text{ are in } C_l \text{ or } C_m; \text{ or } j = 2 \text{ and the other vertex of } \deg \geq 3 \text{ is nonadjacent to } u_0; \\ n + 1 & \text{otherwise.} \end{cases}
\]

Proof: Let the l–cycle be $C_l = \{u_0, u_1, \ldots, u_{l-1}, u_0\}$ and the m–cycle be $C_m = \{u_0, u_1, u_{l+1}, \ldots, u_{l+m-2}, u_0\}$ in G.

(i). If $G = U(l; m)$ then $\eta_{ia}(G) = 5$.

Otherwise, Take $G' = G - \{e\}$, where e is an edge with end vertices of degree 2 in G.

If $j = 1$ then G' is a unicyclic graph with $n + 2$ pendant vertices so that $\eta_{ia}(G') = n + 4$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G'. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 4$. Hence, $\eta_{ia}(G) \leq n + 5$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least four vertices in $U(l; m)$ are external vertices so that $t \geq n + 4$. Hence, $\eta_{ia}(G) = q - p + t \geq 1 + n + 4 = n + 5$.

If $j = 2$, similar as above.

If $j = 3$, similar as above if no vertex of C_l except u_0 is of $\deg \geq 3$.

If $j = 3$ each of C_l and C_m has a vertex other than u_0 of $\deg \geq 3$. Let e be an edge in $U(l; m)$ not adjacent to u_0, then $G' = G - e$ is a unicyclic graph with $n + 1$ pendant vertices so that $\eta_{ia}(G') = n + 2$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G'. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 3$. Hence, $\eta_{ia}(G) \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least two vertices in $U(l; m)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{ia}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

If $j = 4$, similar as above.

If $j = 5$. Let e be an edge in $U(l; m)$ not adjacent to u_0. Then $G_1 = G - e$ is a unicyclic graph with n pendant vertices so that $\eta_{ia}(G_1) = n$. Let ψ_1 be a minimum induced acyclic
graphoidal cover of G_1. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{\omega}(G) = q - p + t + n - 1 + 1 - 1 = q - p + t + n - 1$.

(ii). Case(a). $G = U(l; m)$. Then $\eta_{\omega}(G) = 4$.

Case(b). When $j = 1$. Then $G_1 = G - C_m$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n + 2$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup C_m$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 2 = n + 4$. Hence, $\eta_{\omega}(G) \leq n + 4$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least three vertices in $U(l; m)$ are external vertices so that $t \geq n + 3$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 3 = n + 4$.

When $j = 2$ and u_0 is adjacent to the other vertex of $\deg \geq 3$ in C_m. Then $G_1 = G - C_1$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n + 1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup C_1$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 3 = n + 4$. Hence, $\eta_{\omega}(G) \leq n + 4$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least three vertices in $U(l; m)$ are external vertices so that $t \geq n + 3$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 3 = n + 4$.

Case(c). When $j = 2$ and the other vertex of $\deg \geq 3$ is in C_1. Then $G_1 = G - C_m$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n + 1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup C_m$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 2 = n + 2$. Hence, $\eta_{\omega}(G) \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least two vertices in $U(l; m)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

When $j \geq 2$ and all vertices of $\deg \geq 3$ are in C_m. Then $G_1 = G - C_1$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup C_1$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 1 = n + 3$. Hence, $\eta_{\omega}(G) \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least two vertices in $U(l; m)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

Case(d). When $j = 3$ and all vertices of $\deg \geq 3$ are in C_1. Then $G_1 = G - C_m$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup C_m$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 2 = n + 2$. Hence, $\eta_{\omega}(G) \leq n + 2$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex in $U(l; m)$ are external vertices so that $t \geq n + 1$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 1 = n + 2$.

When $j = 4$ and exactly one vertex, say u_1, of $\deg \geq 3$ is adjacent to u_0 in C_m. Let e be an edge not adjacent to u_0 in C_1. Then $G_1 = G - e$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n + 1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 1 = n + 2$. Hence, $\eta_{\omega}(G) \leq n + 2$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex in $U(l; m)$ are external vertices so that $t \geq n + 1$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 1 = n + 2$.

Case(e). When $j \geq 4$. Let e be an edge in C_1 not adjacent to u_0. Then $G_1 = G - e$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 1 = n + 2$.

Similarly, we can prove for $j = 2$ and the other vertex of $\deg \geq 3$ is adjacent to u_0.

When $j = 3$. Suppose u_t in C_t and $u_{t+1+m-2}$ in C_m are of $\deg \geq 3$ and both are adjacent to u_0. Let P be an induced path $u_t - u_{t+1+m-2}$ of length at least two in C_m such that $G_1 = G - P$ is a unicyclic graph with $n + 1$ pendant vertices and so $\eta_{\omega}(G_1) = n + 2$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup P$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 1 = n + 3$. Hence, $\eta_{\omega}(G) \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least two vertices in $U(l; m)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

Case(c). When $j \geq 2$ and all vertices of $\deg \geq 3$ except u_0 are in C_m, or $j = 2$ with the other vertex v of $\deg \geq 3$ is nonadjacent to u_0 in G. Then $G_1 = G - C_1$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup C_1$ is an induced acyclic graphoidal cover of G and $| \psi | = | \psi_1 | + 2 = n + 2$. Hence, $\eta_{\omega}(G) \leq n + 2$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and at least one vertex in $U(l; m)$ are external vertices so that $t \geq n + 1$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 1 = n + 2$.

Case(d). When $j = 3$ and $e \in C_1$, $v \in C_m$ of $\deg \geq 3$ are nonadjacent to u_0. Let $P = (u_0, \ldots, v)$ be a path of length at least 2 in C_m such that $G_1 = G - P$ is a unicyclic graph with n pendant vertices and so $\eta_{\omega}(G_1) = n$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup P$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{\omega}(G) = n + 1$.

When $j \geq 4$. Take two non adjacent vertices v_1 and v_2 of $\deg \geq 3$ in C_t (or C_m). Let T be the induced subgraph of G containing all vertices on one side of the arc $v_1 - v_2$ of C_t (or C_m) such that these two vertices appear as pendant vertices and T has $n_1 + 2$ pendant vertices so that $\eta_{\omega}(T) = n_1 + 1$. Let ψ_1 be the minimum induced acyclic graphoidal cover of T. Then $G_1 = G - T$ is a unicyclic graph with n_2 pendant vertices in $U(l; m)$ are external vertices so that $t \geq n + 1$.
vertices so that $n = n_1 + n_2$ and $\eta_{\omega}(G_1) = n_2$. Let ψ_2 be the minimum induced acyclic graphoidal cover of G_2. Then $\psi = \psi_1 \cup \psi_2$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{\omega}(G) = n + 1$.

Theorem II.10. Let G be a bicyclic graph with n pendant vertices containing a $D(l, m; i)$ and j be the number of vertices of degree greater than or equal to 3 in cycles in $D(l, m; i)$. Then when

(i) $l, m = 3$

$$\eta_{\omega}(G) = \begin{cases} 5 & \text{if } G = D(l, m; i); \\ n + 7 - j & \text{if } 2 \leq j \leq 6. \end{cases}$$

(ii) $l, m \geq 4$

$$\eta_{\omega}(G) = \begin{cases} 4 & \text{if } G = D(l, m; i); \\ n + 4 & \text{if } j = 2; \text{ or } j = 3 \text{ and the third vertex of } \deg \geq 3 \text{ is adjacent to either } u_{l+i-1} \text{ or } u_{l+i-1}'; \\ n + 3 & \text{if } j = 3 \text{ and the third vertex of } \deg \geq 3 \text{ is in } C_m; \\ n + 2 & \text{if } j = 4 \text{ and } C_m \text{ has no vertex of } \deg \geq 3 \text{ other than } u_{l+i-1} \text{ or } j = 5 \text{ and } C_m \text{ has exactly one vertex of } \deg \geq 3 \text{ which is adjacent to } u_{l+i-1}; \\ n + 1 & \text{otherwise}. \end{cases}$$

(iii) $l, m \geq 4$

$$\eta_{\omega}(G) = \begin{cases} 3 & \text{if } G = D(l, m; i); \\ n + 3 & \text{if } j = 2; \text{ or } j = 3 \text{ and the third vertex of } \deg \geq 3 \text{ is adjacent to either } u_{l+i-1} \text{ or } u_{l+i-1}'; \\ n + 2 & \text{if } j = 3 \text{ and all vertices of } \deg \geq 3 \text{ are in } C_1 \text{ or } C_m \text{ only; or } j = 3 \text{ and the other vertex of } \deg \geq 3 \text{ is adjacent to neither } u_{l+i-1} \text{ nor } u_{l+i-1}'; \\ n + 1 & \text{otherwise}. \end{cases}$$

Proof: Let $C_l = u_{l+1}u_1 \ldots u_{l-1}u_0, P_i = u_{l-1}u_1 \ldots u_{l+i-1}$ and $C_m = u_{l+i+3}u_{l+i+1} \ldots u_{l+i+m-2}u_{l+i-1}$ in G.

(i). If $G = D(l, m; i)$ then $\eta_{\omega}(G) = 5$.

Otherwise, Take $G' = G - \{e\}$, where e is an edge with end vertices of degree 2 in G.

If $j = 2$ then G' is a unicyclic graph with $n + 2$ pendant vertices so that $\eta_{\omega}(G') = n + 4$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G'. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 5$. Hence, $\eta_{\omega}(G) \leq n + 5$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and atleast four vertices in $D(l, m; i)$ are external vertices so that $t \geq n + 4$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 4 = n + 5$. If $j = 3$, similar as above.

If $j = 4$, similar as above if no vertex of C_l except u_{l-1} is of $\deg \geq 3$.

If $j = 6$, let e be an edge in $D(l, m; i)$ not adjacent to u_{l-1} or u_{l+i-1}, then $G' = G - e$ is a unicyclic graph with $n + 1$ pendant vertices so that $\eta_{\omega}(G') = n + 2$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G'. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 3$. Hence, $\eta_{\omega}(G') \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and atleast two vertices in $D(l, m; i)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

If $j = 5$, similar as above.

If $j = 6$. Let e be an edge in C_l not adjacent to u_{l-1}. Then $G_1 = G - e$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup v$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_{\omega}(G) = q - p + t \geq n + 1$.

(iii). Case(a). If $G = D(l, m; i)$ then $\eta_{\omega}(G) = 4$.

Case(b). When $j = 2$. Then $G_1 = G - C_m$ is a unicyclic graph with pendant vertices so that $\eta_{\omega}(G_1) = n + 2$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 2 = n + 4$. Hence, $\eta_{\omega}(G) \leq n + 4$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and atleast three vertices in $D(l, m; i)$ are external vertices so that $t \geq n + 3$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 3 = n + 4$.

Similarly, we can prove for $j = 3$ and the third vertex of $\deg \geq 3$ is adjacent to u_{l+i-1}. Case(c). When $j = 3$ and the third vertex of $\deg \geq 3$ is in C_l. Then $G_1 = G - C_m$ is a unicyclic graph with n pendant vertices so that $\eta_{\omega}(G_1) = n + 1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup v$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 3$. Hence, $\eta_{\omega}(G) \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and atleast two vertices in $D(l, m; i)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

Similarly, we can prove for $j = 4$ and all vertices of $\deg \geq 3$ are in C_m by taking $G_1 = G - C_l$.

When $j = 4$ and v in C_l and w adjacent to u_{l+i-1} in C_m are of $\deg \geq 3$. Let e be an edge in $D(l, m; i)$ not adjacent to u_{l-1} and u_{l+i-1} such that $G_1 = G - e$ is a unicyclic graph with $n + 1$ pendant vertices. Then $\eta_{\omega}(G_1) = n + 2$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup e$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 3$. Hence, $\eta_{\omega}(G) \leq n + 3$. Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and atleast two vertices in $D(l, m; i)$ are external vertices so that $t \geq n + 2$. Hence, $\eta_{\omega}(G) = q - p + t \geq 1 + n + 2 = n + 3$.

Case(d). When $j = 4$ and C_m has no vertex of $\deg \geq 3$ other
than \(u_{l+1} \). Then \(G_1 = G - C_m \) is a unicyclic graph with \(n \) pendant vertices so that \(\eta_l(G_1) = n \). Let \(\psi_l \) be a minimum induced acyclic graphoidal cover of \(G_1 \). Then \(\psi = \psi_1 \cup C_m \) is an induced acyclic graphoidal cover of \(G \) and \(|\psi| = |\psi_1| + 2 = n + 2 \). Hence, \(\eta_l(G) \leq n + 2 \). Again, for any induced acyclic graphoidal cover \(\psi \) of \(G \), the \(n \) pendant vertices of \(G \) and at least one vertex in \(D(l, m;i) \) are external vertices so that \(t \geq n + 1 \). Hence, \(\eta_l(G) = q - p + t \geq 1 + n + 1 = n + 2 \).

When \(j \geq 5 \) and \(\eta \) has exactly one vertex of deg \(\geq 3 \) which is adjacent to \(u_{l+1} \). Let \(\epsilon \) be an edge in \(C_1 \) not adjacent to \(u_{l+1} \). Then \(G_1 = G - \epsilon \) is a unicyclic graph with \(n \) pendant vertices so that \(\eta_l(G_1) = n + 1 \). Let \(\psi_l \) be a minimum induced acyclic graphoidal cover of \(G_1 \). Then \(\psi = \psi_1 \cup \epsilon \) is an induced acyclic graphoidal cover of \(G \) and \(|\psi| = |\psi_1| + 1 = n + 2 \). Hence, \(\eta_l(G) \leq n + 2 \). Again, for any induced acyclic graphoidal cover \(\psi \) of \(G \), the \(n \) pendant vertices of \(G \) and at least one vertex in \(D(l, m;i) \) are external vertices so that \(t \geq n + 1 \). Hence, \(\eta_l(G) = q - p + t \geq 1 + n + 1 = n + 2 \).

Remark II.11. In case \(P_i \) in \(D(l, m;i) \) has any intermediate vertex(ices) of degree greater than or equal to 3 there will be no change in the minimum induced acyclic graphoidal covering number.

Theorem II.12. Let \(G \) be a bicyclic graph with \(n \) pendant vertices containing a \(C_m;i,l \) and \(j \) be the number of vertices of degree greater than or equal to 3 in \(C_m;i,l \). Then

(i) \(\eta_l(G) = 3 \) if \(G = C_m;i,l \).

and when

(ii) \(l = 1 \)

\[
\eta_l(G) = \begin{cases}
 n + 3 & \text{if } j = 2; \\
 n + 2 & \text{if } j \geq 3 \text{ and all the vertices of deg} \geq 3 \text{ are in one side of } P_i; \\
 n + 1 & \text{otherwise}.
\end{cases}
\]

(iii) \(l \geq 2 \)

\[
\eta_l(G) = \begin{cases}
 n + 2 & \text{deg} u_0 = 3 \text{ and either } j = 2 \text{ or } j = 3 \text{ with the third vertex of deg} \geq 3 \text{ is adjacent to } u_i; \\
 n + 1 & \text{otherwise}.
\end{cases}
\]

Proof: \(G = C_m;i,l \), so it contains at least \(C_m = \{u_0, u_1, \ldots, u_i, u_{i+1}, \ldots, u_{m-1}, u_0\} \) with \(m \geq 4 \) and the chord \(P_i = \{u_0, u_m, u_{m+1}, \ldots, u_{i-2}, u_i\}, l \geq 1 \) and \(2 \leq i \leq m - 2 \).

(i) If \(G = C_m;i,l \) then \(\eta_l(G) = 3 \).

(ii) Case(a). When \(j = 2 \). Let \(u_s, 0 < s < i \), be any vertex in \(C_m;i,l \). Then \(P_1 = \{u_0, u_s\} \), \(P_2 = \{u_s, u_{s+1}, \ldots, u_i\} \) be induced paths in \(C_m;i,l \). Let \(G_1 = G - \{P_1, P_2\} \) be a unicyclic graph with \(n \) pendant vertices so that \(\eta_l(G_1) = n + 1 \). Let \(\psi_1 \) be a minimum induced acyclic graphoidal cover of \(G_1 \). Then \(\psi = \psi_1 \cup P_1 \cup P_2 \) is an induced acyclic graphoidal cover of \(G \) and \(|\psi| = |\psi_1| + 2 = n + 3 \). Hence, \(\eta_l(G) \leq n + 3 \). Again, for any induced acyclic graphoidal cover \(\psi \) of \(G \), the \(n \) pendant vertices of \(G \) and at least two vertices in \(D(l, m;i) \) are external vertices so that \(t \geq n + 2 \). Hence, \(\eta_l(G) = q - p + t \geq 1 + n + 2 = n + 3 \).

Case(b). When \(j \geq 3 \) and all the vertices of \(\text{deg} \geq 3 \) are in one side of \(P_i \), say \(\{u_i, u_{m-1}, u_0\} \). Take a vertex \(u_s, 0 <
Let ψ_1 be a minimum induced acyclic graphoidal cover of G. Then $\psi = \psi_1 \cup P_1 \cup P_2$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 2 = n + 2$. Hence, $\eta_\alpha(G) \leq n + 2$.

Case(c). When $j \geq 4$, suppose $u_i \ (0 < s < i)$ and $u_t \ (i < t < m - 1)$ are two vertices of $deg \geq 3$ in $C_m(i; l)$. Then T is a unicyclic graph with n pendant vertices so that $\eta_\alpha(G) = n + 1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G. Then $\psi = \psi_1 \cup P_1 \cup P_2$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 2 = n + 2$. Hence, $\eta_\alpha(G) \leq n + 2$.

(ii). Case(a). When $j = 2$ and $deg u_0 = 3$.

Similarly, we can prove for $j = 3$ and the third vertex of $deg \geq 3$ is adjacent to u_0.

Case(b). Let $P = \{u_0u_{m+1} \ldots u_{l+m-2}u_t\}, 2 \leq i \leq m - 2$, be the chord in $C_m(i; l)$ such that $\eta_\alpha(P) = 1$. Then $G_1 = G - P$ is a unicyclic graph with n pendant vertices so that $\eta_\alpha(G_1) = n + 1$. Let ψ_1 be a minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup P$ is an induced acyclic graphoidal cover of G and $|\psi| = |\psi_1| + 1 = n + 1$. Hence, $\eta_\alpha(G) \leq n + 2$.

Again, for any induced acyclic graphoidal cover ψ of G, the n pendant vertices of G and atleast one vertex in $C_m(i; l)$ are external vertices so that $t \geq n + 1$. Hence, $\eta_\alpha(G) = q - p + t \geq 1 + n + 1 = n + 2$.

Otherwise, let T be the induced subgraph of G with vertex set $\{u_0u_{m+1} \ldots u_{l+m-2}u_t\}, 2 \leq i \leq m - 2$, along with vertices incident to this vertex set such that $deg u_0, u_{l+m-2} = 1$. Then T has $n_1 + 2$ pendant vertices so that $\eta_\alpha(T) = n_1 + 1$. Let ψ_1 be the minimum induced acyclic graphoidal cover of T. Then $G_1 = G - T$ is a unicyclic graph with n_2 pendant vertices so that $n = n_1 + n_2$ and $\eta_\alpha(G_1) = n_2$. Let ψ_2 be the minimum induced acyclic graphoidal cover of G_1. Then $\psi = \psi_1 \cup \psi_2$ is an induced acyclic graphoidal cover of G and every vertex of degree greater than 1 is an internal vertex of some path in ψ. Hence, $\eta_\alpha(G) = n + 1$.}

REFERENCES

