Performance Evaluation of Routing Protocols For High Density Ad Hoc Networks based on Energy Consumption by GlomoSim Simulator

E. Ahvar, and M. Fathy

Abstract—Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1). Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords—Ad hoc Network, energy consumption, Glomosim, routing protocols.

I. INTRODUCTION

In an ad hoc network, mobile nodes communicate with each other using multihop wireless links. There is no stationary infrastructure; for instance, there are no base stations. Each node in the network also acts as a router, forwarding data packets for other nodes. A central challenge in the design of ad hoc networks is the development of dynamic routing protocols that can efficiently find routes between two communicating nodes. The routing protocol must be able to keep up with the high degree of node mobility that often changes the network topology drastically and unpredictably. Such networks have been studied in the past in relation to defense research, often under the name of packet radio networks [1].

Routes between two hosts in a Mobile Ad hoc NETWork (MANET) may consist of hops through other hosts in the network [7]. Host mobility causes frequent unpredictable topology changes. Therefore, the task of finding and maintaining routes in MANET is nontrivial. Many protocols have been proposed for mobile ad hoc networks, with the goal of achieving efficient routing [6]-[9]-[11]-[13]-[12]-[14]-[15]-[16]-[17]-[18]-[19]-[20]. These algorithms differ in the of achieving efficient routing [6]-[9]-[11]-[13]-[12]-[14]-[15]-[16]-[17]-[18]-[19]-[20]. These algorithms differ in the approaches for searching a new route and/or modifying a known route, when hosts move. The ad hoc routing protocols may be generally categorized as table-driven and source-initiated on-demand driven. The simulation results reported in several papers [23]-[24] show that normally on demand routing protocols have higher packet delivery ratio and need less routing messages than table-driven routing protocols.

Energy consumption in ad hoc networks is a very important factor. Because batteries carried by each mobile node have limited power supply, processing power is limited, which in turn limits services and applications that can be supported by each node. This becomes a bigger issue in mobile ad hoc networks because, as each node is acting as both an end system and a router at the same time, additional energy is required to forward packets from other nodes [25].

Our goal is to carry out a systematic performance study of three on demand routing protocols for high density ad hoc networks: the Dynamic Source Routing protocol (DSR) [3, 4] and the Ad Hoc On-Demand Distance Vector protocol (AODV) [5]-[8] Location-Aided Routing (LAR)[2].

The rest of the article is organized as follows: In the following section, we briefly review the LAR1, DSR and AODV protocols. We present a detailed critique of the three protocols, focusing on the differences in their dynamic behaviors that can lead to performance differences. This lays the foundation for much of the context of the performance study. We describe the simulation environment. We present the simulation results, followed by their interpretations. We finally draw conclusion.

II. DESCRIPTION OF THE PROTOCOLS

A. LAR1

This algorithm uses a request zone that is rectangular in shape. Consider a node S that needs to find a route to node D. Assume that node S knows that node D was at location (Xd, Yd) at time t0. At time t1, node S initiates a new route discovery for destination D. It assumes that node S also knows the average speed v with which D can move. Using this, node S defines the expected zone at time t1 to be the circle of radius \(R = v(t1 - t0) \) centered at location (Xd, Yd). When a node receives a route request, it discards the request if the node is not within the rectangle specified by the four corners included in the route request.
For instance, in Fig. 1, if node I receives the route request from another node, node I forwards the request to its neighbors, because I determines that it is within the rectangular request zone. However, when node J receives the route request, node J discards the request, as node J is not within the request zone.[2]

B. DSR

The key distinguishing feature of DSR [3, 4] is the use of source routing. That is, the sender knows the complete hop-by-hop route to the destination. These routes are stored in a route cache. The data packets carry the source route in the packet header.

When a node in the ad hoc network attempts to send a data packet to a destination for which it does not already know the route, it uses a route discovery process to dynamically determine such a route. Route discovery works by flooding the network with route request (RREQ) packets.

Each node receiving an RREQ rebroadcasts it, unless it is the destination or it has a route to the destination in its route cache. Such a node replies to the RREQ with a route reply (RREP) packet that is routed back to the original source. RREQ and RREP packets are also source routed. The RREQ builds up the path traversed across the network. The RREP routes itself back to the source by traversing this path backward. The route carried back by the RREP packet is cached at the source for future use. If any link on a source route is broken, the source node is notified using a route error (RERR) packet. The source removes any route using this link.

In contrast to DSR, RERR packets in AODV are intended to inform all sources using a link when a failure occurs. Route error propagation in AODV can be visualized conceptually as a tree whose root is the node at the point of failure and all sources using the failed link as the leaves.[14]

III. THE SIMULATION MODEL

To compare the routing protocols, a parallel discrete event-driven simulator, GloMoSim, was used. GloMoSim (Global Mobile Information System Simulator) is a simulation tool for large wireless and wired networks [10]. We focused on energy consumption to compare the three routing protocols.

The control parameters we used in our simulation experiments were traffic load(TL), node density(n) and node mobility.

Traffic load generated by each source node was modeled by a constant bit rate data stream, whose transmission rate was defined by packet transmission interval for fixed size packets. Two different levels of traffic load defined by the packet transmission intervals are, (i) low traffic load: one packet transmitted at every 10 seconds, (ii) medium traffic load: one packet at every second. Movement of each node was modeled using the random waypoint model. In the random waypoint model, each node remains stationary for the duration of its “pause-time”. At the end of a pause time, a node starts moving in a randomly selected direction in the network terrain at a fixed speed. Once a node reaches its new location, it remains stationary during its next pause-time. At the end of the new pause time, a node again starts moving in another randomly selected direction in the network. This movement process was continued during a simulation experiment. The network terrain size was fixed for 2,000 * 2,000 meters. The simulation time was 450 seconds for all the experiments.
IV. SIMULATION RESULTS

Fig. 2 Energy consumption (n=500, TL=1s)

Fig. 3 Energy consumption (n=100, TL=1s)

Fig. 4 Energy Consumption (n=100, TL=10s)

Fig. 5 Energy consumption (n=1000, TL=1s)

Fig. 6 Energy consumption (n=1000, TL=10s)

Fig. 7 Energy consumption (n=500, TL=10s)

V. CONCLUSION

We have compared the performance of LAR1, DSR and AODV, three prominent on-demand routing protocols for ad hoc networks. The following is a list of key findings obtained from our experiments:

Finding 1: Contrary to our prediction, LAR1 performed much better than expected for high density networks. LAR1 is better in energy consumption generally in high density networks.

Finding 2: DSR resulted in the best (i.e., the least) energy consumption for low density networks.

Finding 3: AODV generated higher volume of energy even than the DSR in high density networks.

Finding 4: LAR1 for high density networks (n=1000) is much better than others. Therefore, LAR1 is a good protocol for high density ad hoc networks.

REFERENCES

