Abstract—In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

Keywords—Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit

I. INTRODUCTION

ROTATING brushless exciters are well established in providing the field current for synchronous generators. The advantages against slip rings with a stationary rectifier are the self-excitation by an auxiliary exciter and the low maintenance effort. The exciter system itself consists of a voltage regulator, a main and an auxiliary exciter machine and a rotating bridge rectifier. The aim of this paper is the detailed analysis of the main exciter machine as part of the whole exciter system. The examined machine type has a three phase armature winding in the laminated rotor, a concentrated salient-pole field winding in the laminated stator and no explicit damper winding. The function of a damper is provided by the stator steel lamination where eddy currents occur. Its sheets are thicker compared to the armature sheets and non-insulated against each other. This damper treatment can be derived from a massive pole shoe. Several authors [1] - [4] proposed exciter models and simulated the operating behavior.

In [1] a standard second order model was used to determine stresses of the several components in the power system, where the parameters were used from advanced calculation. But even in the stationary operation of the generator the exciter machine is always stressed by voltage and current harmonics in the rotor and in the stator winding due to the feedback from the bridge rectifier. In addition to that the switching cause the excitation of high frequent voltage peaks in resonant circuits formed from the capacitance of the diodes and the commutation reaction of the machine. This reactance is mainly calculated from the sub-transient values of the d- and q-axis. Accordingly the frequency range of conventional synchronous generator models is extended by orders. Beside the advanced calculation, extended efforts were made to measure the parameters at standstill. Actually two standards [5] and [6] provide a good base for the SSFR method. Apart from other authors dealing with these tests [7] - [9] focused on the low frequency generator application this article also concentrates on the high frequency behavior at several kHz.

II. DETERMINATION OF THE FREQUENCY BEHAVIOR

A. Application of the SSFR method

The conditions for the measurement are derived from the idea of two individual axis with no cross coupling flux effects during standstill in Fig. 1. The tests were carried out as shown in Fig. 2 with currents of about 1% of the nominal current.

![Fig. 1 Two-port network equivalent circuits](image1)

![Fig. 2 Measurement scheme, S: Switch to shorten the field winding, Θ: angle of alignment between field and armature winding](image2)
As a first step the armature winding is fed by two phases connected in series. At the same time the rotor is shorted and turned until the maximum current is observed in the field winding. Thus both magnetic axis are aligned. In that position the input impedance of the d-axis z_{dq} and the current transfer functions G_{dq} are measured [5]:

\[
\begin{align*}
z_{dq} &= 1/2 \cdot u_d / i_d = u_d / i_d \mid u_{dq} = 0 \\
- p \cdot G_{dq} &= \sqrt{3} / 2 \cdot i_d / L_d = i_d / L_d \mid u_{dq} = 0
\end{align*}
\]

(1) \hspace{1cm} (2)

The reactance operator x_d results from the impedance z_{dq}:

\[
x_d(j\nu) = (z_{dq}(j\nu) - r_a) / j\nu
\]

(3)

As a third relation the transfer impedance is found by leaving the field winding open and measure the induced voltage:

\[
z_{d0} = \sqrt{3} / 2 \cdot u_d / i_d = u_d / i_d \mid i_{d0} = 0
\]

(4)

The last step is a re-alignment of the rotor into the quadrature axis by finding the minimum field current.

\[
z_{q} = 1/2 \cdot u_q / i_q = u_q / i_q \mid i_{q0} = 0
\]

(5)

The reactance operator again results from the impedance z_{q0}:

\[
x_q(j\nu) = (z_{q0}(j\nu) - r_a) / j\nu
\]

(6)

The measurement covered a wide frequency range from 1mHz to $10kHz$.

B. Model Parameter Identification

Having determined the amplitudes and phase shifts of the sinusoidal voltages and currents at the ports, the four transfer functions $x_q(p)$, $x_q(p) \cdot G_{dq}(p)$, $z_{dq}(p)$ are known at the measured points. In order to get a continuous relation between the input and output quantities linear transfer functions (LTF) of n-th order are used as an approach. The next equation starts exemplary with the complex admittance operators for the q-axis which is the same for the direct axis.

\[
x_q(j\omega) = \frac{1}{x_q} \left(1 + \frac{1}{x_q} \frac{j\omega \cdot T_q^{(2)}}{1 + j\omega \cdot T_q^{(1)}} + \ldots + \frac{1}{x_q^{(k-1)}} \frac{j\omega \cdot T_q^{(k)}}{1 + j\omega \cdot T_q^{(k)}} \right)
\]

(7)

The parameter determination of these functions from the measurement ends up in a complex Least Square minimization problem. With the help of conventional mathematic tools the transfer functions are best fitted by applying either the Newton Raphson or Levenberg-Marquardt algorithm.

\[
Q_{LS} = \sum \left| 1/x_{\text{meas},i} - 1/x_{\text{mod},i} \right| \rightarrow \text{min}!
\]

(8)

Solving the least square (LS) equations for the whole frequency range the results are stated in Fig. 3, Fig. 4 and in Tables I and II. The higher the order of the fitting function is the smaller its remaining least square error becomes. Especially the second order fit for the quadrature axis leads to unacceptable discrepancies in the medium frequency range. The third order approximation is found to be reasonable. From the low frequency limits the $0Hz$ values are extrapolated to:

\[
x_{d0} = 0.865 \text{pu} \cdot x_{q0} = 0.680 \text{pu} \cdot r_a = 0.01 \text{pu}
\]
This condition is neither kept for the d-axis nor for the q-axis. The reason for that is the increasing field displacement at higher frequencies taking effect in the armature slots on the stranded winding. In contrast to standard synchronous machines for generator application this high frequency effect is mostly not considered because the recommended upper frequency limit for the measurement is three times the rated frequency (150-180Hz). In order to keep the conventional model structure the fitting process is cut off at a frequency of about 1kHz. Nevertheless the results are still in a good agreement till the middle of this order of magnitude. With this limitation the following results were achieved:

TABLE III

<table>
<thead>
<tr>
<th>Symbol</th>
<th>II<sup>th</sup> order</th>
<th>III<sup>th</sup> order</th>
<th>IV<sup>th</sup> order</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_d</td>
<td>0.334</td>
<td>0.342</td>
<td>0.354</td>
</tr>
<tr>
<td>x_q</td>
<td>0.223</td>
<td>0.314</td>
<td>0.337</td>
</tr>
<tr>
<td>x_d</td>
<td>-0.179</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>x_q</td>
<td>-</td>
<td>-0.179</td>
<td></td>
</tr>
<tr>
<td>T_d</td>
<td>0.349</td>
<td>0.366</td>
<td>0.393</td>
</tr>
<tr>
<td>T_q</td>
<td>122.6μ</td>
<td>1.709μ</td>
<td>0.045</td>
</tr>
<tr>
<td>T_d</td>
<td>54.84μ</td>
<td>1.35μ</td>
<td></td>
</tr>
<tr>
<td>T_q</td>
<td>-</td>
<td>54.42μ</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.394</td>
<td>0.197</td>
<td>0.177</td>
</tr>
</tbody>
</table>

Alternatively a ladder network for the armature leakage as mentioned in [15] might be used. From these tables it becomes obvious that even the highest order reactance is greater than the armature leakage. The values for the equivalent schemes from Fig. 5 and Fig. 6 can be derived accordingly. But still only two reactance operator functions out of four transfer functions were taken into account. As a matter of fact the current transfer function as shown in Fig. 7 yields only a good agreement till frequencies of 100Hz. At higher frequencies the correlation to the measurement becomes even worse due to the wrong flux distribution between the damper and the field winding which is already described in the literature [8], [12]. Consequently the models for the direct axis have to take this current transfer function into consideration without falsifying the input impedance. For the second and the third order model

TABLE IV

<table>
<thead>
<tr>
<th>Symbol</th>
<th>II<sup>th</sup> order</th>
<th>III<sup>th</sup> order</th>
<th>IV<sup>th</sup> order</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_d</td>
<td>0.548</td>
<td>0.571</td>
<td>0.588</td>
</tr>
<tr>
<td>x_q</td>
<td>0.308</td>
<td>0.445</td>
<td>0.547</td>
</tr>
<tr>
<td>x'_d</td>
<td>0.209</td>
<td>0.433</td>
<td></td>
</tr>
<tr>
<td>x'_q</td>
<td>-0.179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_d</td>
<td>0.324</td>
<td>0.492</td>
<td>0.65</td>
</tr>
<tr>
<td>T_q</td>
<td>188.6μ</td>
<td>1.301μ</td>
<td>0.016</td>
</tr>
<tr>
<td>T'_d</td>
<td>54.67μ</td>
<td>941.5μ</td>
<td></td>
</tr>
<tr>
<td>T'_q</td>
<td>-</td>
<td>39.43μ</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.67</td>
<td>0.181</td>
<td>0.131</td>
</tr>
</tbody>
</table>
the amplitude and respectively the phase shift of \(p \cdot G_{pd} \) are considered in the parameter determination process ending up with the characteristic reactance as pointed out in Fig. 8.

Fig. 7 Field to armature current transfer function

The following tables state the resulting equivalent circuit values for the direct axis with and without the characteristic reactance. Actually there is no such value for the quadrature axis.

![Table V](image)

D-AXIS EQUIVALENT CIRCUIT MODEL PARAMETERS, 1E-3 TO 1E3 Hz

<table>
<thead>
<tr>
<th>Symbol</th>
<th>II(^{\text{nd}}) order</th>
<th>III(^{\text{rd}}) order</th>
<th>IV(^{\text{th}}) order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{pd})</td>
<td>786.4/723.4u</td>
<td>780/705.9u</td>
<td>780u</td>
</tr>
<tr>
<td>(x_{pd})</td>
<td>0.204/0.726</td>
<td>0.218/1.799</td>
<td>0.245</td>
</tr>
<tr>
<td>(x_{nc1})</td>
<td>(-/ -0.532)</td>
<td>(-/ -1.371)</td>
<td>-</td>
</tr>
<tr>
<td>(x_{nc2})</td>
<td>(-/ -0.228)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(r_{pd1})</td>
<td>0.956/13.732</td>
<td>0.439/40.235</td>
<td>0.027</td>
</tr>
<tr>
<td>(x_{pd1})</td>
<td>0.064/2.886</td>
<td>0.855/66.656</td>
<td>1.463</td>
</tr>
<tr>
<td>(r_{pd2})</td>
<td>-</td>
<td>1.149/7.139</td>
<td>0.612</td>
</tr>
<tr>
<td>(x_{pd2})</td>
<td>-</td>
<td>1.795m/0.515</td>
<td>0.951</td>
</tr>
<tr>
<td>(r_{pd3})</td>
<td>-</td>
<td>-</td>
<td>1.153</td>
</tr>
<tr>
<td>(x_{pd4})</td>
<td>-</td>
<td>-</td>
<td>1.795m</td>
</tr>
</tbody>
</table>

D-Transfer function model

The equivalent circuit approach was historically chosen to speed up the simulation. Nowadays the simulation of linear transfer functions (LTF) is well established. Many circuit simulators are able to include Laplace transfer functions in their modeling code. Therefore, the transient analysis of the complete system consisting of generator, grid and excitation can be combined with transfer functions. Contrary to simple LTF models for a regulator [14] the implementation into a simulation background leads to the problem of conservative electric nodes which need to have the coincidental formulation because of the unknown energy flow direction. The main difference compared to the equivalent circuit modeling is the unimportance of the physical flux location. Only the electrical behavior at the machine ports is of interest. Following the formulas in [13] the differential system of equations is transferred by Laplace transform. The Normalization of the quantities strictly follows the literature. But time is not normalized to not complicate the simulation model. Beside the exciter it also includes the rectifier, the generator and the voltage regulator where pu-port quantities would be of disadvantage. Especially because the generator and the exciter have different reference angular velocities. Although the inner model is supposed to be in pu values the terminal quantities are supposed to give the real values as shown in Fig. 9. As a consequence, the additional factor \(\omega_n \) will appear in the equations. By using the mere frequency transfer functions no limitation with regard to the frequency range is required.

![Figure 8](image)

Fig. 8 Equivalent circuit for the direct axis considering the common leakage

![Figure 9](image)

Fig. 9 Blackbox modeling of the machine, F: Field winding, A: Armature winding with phases U/V/W, E: Neutral/Ground connection, n: speed (coupled to generator), d/q/0: model quantities referred to armature winding and pole coordinate system
The subsequent system of equations includes the four mandatory transfer functions to reproduce the measured system behaviors. The initial conditions are set to zero. This first set of equations yields a formulation for direct axis flux linkage and the field current:

\[
\begin{bmatrix}
\Psi_d \\
\dot{\Psi}_d
\end{bmatrix} =
\begin{bmatrix}
x_d(p) & G_{\delta d}(p) \cdot \omega_n \\
-p \cdot G_{\delta d}(p) & F_{\delta d}(p)
\end{bmatrix}
\begin{bmatrix}
\dot{i}_d \\
\dot{u}_{\delta d}
\end{bmatrix}
\tag{10}
\]

with

\[F_{\delta d}(p) = p \cdot G_{\delta d}(p) / z_{\delta d}(p)\tag{11}\]

The last equation shows the quadrature axis flux linkage.

\[\Psi_q = x_q(p) \cdot i_q\tag{12}\]

The measured parameter values for the reactance operator functions \(x_d(p)\) and \(x_q(p)\) correspond with (7) and the values in Table I and II for the third order model. The last two transfer functions are found in accordance with the subsequent equations.

\[p \cdot G_{\delta d} = p \cdot 0.794 / (1 + p \cdot 1.032)\tag{13}\]

\[z_{\omega d} = -p \cdot 542.2 \cdot 10^{-6} / (1 + p \cdot 240.8 \cdot 10^{-6})\tag{14}\]

The set of equations for the full model description is supplemented by the voltage equations in appendix B.

III. COMPARISON OF THE TWO MODELS AND QUALITY OF FIT

For the upper frequency limit which is to take into consideration important frequencies need to be known. With the Turbine-Generator-Exciter machine train rotating at grid frequency \(f_{gr}\) of 50 or 60Hz and the machine having multiple pole pairs \(n_{pp}\) = 4 the resulting electrical frequency is

\[f_{el} = n_{pp} \cdot f_{gr} = 200 / 240Hz\]

Due to the bridge rectifier this frequency is multiplied by the characteristic factor of the rectifier which is six in the example. With the measurement presented it is obvious that the application of the conventional equivalent circuit structure might not be sufficient for modeling especially the commutation effects stressing the diodes and the resonances in the range of several kHZ. Therefore the upper frequency limit was pushed far beyond the recommended frequency in [5] and the grid frequency of the synchronous generator. The application of the SSFR method revealed important information about the machine behavior especially confirming the efficiency of the damper construction. Although the stator is laminated eddy currents occur and filter out harmonics from the field winding. In addition to that the limits of the common equivalent circuit could be shown and the advantage of the LTF model was examined for the usage in a transient simulation. Next graphs summarize the results of the measurement extrapolated to 100kHz. The fourth order approximation was replaced by the LTF model in the graphs.
Using the input impedance based on the equivalent circuit in (19) the branch impedance is obtained in (20).

\[
j v \cdot x_q (j v) = j v \cdot x_{ad} + j v \cdot x_q \left(1 + j v \cdot x_{dq} \right) \quad (19)
\]

\[
1 / Y_d = j v \cdot x_{dq} \left(x_q (j v) - x_{ad} \right) / \left(x_q + x_{ad} - x_q (j v) \right) \quad (20)
\]

Resulting in the fraction (20) the constant parameters of the partial fraction elements are easily calculated by using the Heavy-side cover up method.

\[
R / Q = \left(x_q + x_{ad} - x_q (j v) \right) / \left(j v \cdot x_{dq} \right) \quad (21)
\]

Finally the reactance and the resistance of the ladder network are determined with (22) and (23).

REFERENCES

