Numerical Method based on Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates

Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, and Burhany M. Burhamy

Abstract—The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence.

Keywords—Vibrations, Step by Step Integration, Stepped plate, Boundary.

I. INTRODUCTION

PLATES with varying thickness are extensively used in modern structures due to their unique functions. For example, stepped plates possess a number of attractive features, such as material saving, weight reduction, stiffness enhancing, designated strengthening and fundamental vibration frequency increasing. With the availability of inexpensive and high performance computers, theoretical analysis is employed to optimize stepped plates in practical engineering designs [1]-[2]-[3]. In particular, buckling and free vibration analysis of stepped plates has attracted much attention in the past few decades [2]. A few numbers of theoretical approaches have been formulated for this class of problems. Although, Chopra [4] has attempted an exact solution for a simply supported stepped thickness plate with two panels, Warburton [4] pointed out that the continuity conditions used by Chopra were incorrect. He offered a modified analytical technique for two paneled stepped plate with different properties of orthotropy. However, dealing with the proposed plates by analytical method (Levy-type) was successful [2], but it was restricted to limited edges boundary conditions. On the other hand there was [1] a flexibility of applying variety of boundary condition with power matrix exponential method. Other developed numerical methods like Finite Strip Method (FSM) [5], or a developed one like finite strip transition matrix method (FSTM) [4] are used to get dynamical solutions. Since analytical solutions of the partial differential equation of motion for some plate problems are so complicated, numerical and approximate methods can be used [6]-[7]-[8]. In the engineering applications of the theory of plates, Finite Differences (FD) method is a classical field [9]-[10]-[11] while among the numerical techniques, finite differences method is one of the most general. Recently, despite the existence of a broad variety of numerical method for the structural analysis, finite differences method is still regarded as a numerical method for straightforward analysis of specialized problems [12]. On the other hand, the initial value method is one of the fast approximate methods, which proves a good convergence with the exact solution [13]-[14]. In the present paper, an improved technique (IVFD) combining the initial value method (IV) and finite differences method (FD) is achieved to analyze the flexural vibration of stepped plate. A selected mesh grid is applied for the partial differential equation of plate motion where the initial value method is utilized in one direction. In the other direction, the partial derivatives are replaced with quantities of the finite differences method. The developed IVFD method is successfully applied for free vibration analysis of stepped thickness plates with different combinations of boundary conditions. The natural frequency parameters are calculated and the efficiency of the method is validated by comparing the deduced results with those published in the literature.

II. INITIAL VALUE FINITE DIFFERENCES MATHEMATICAL FORMULATION

The governing partial differential equation of small transverse deflection of a thin isotropic elastic plate, of thickness h, for free vibration [15] has the form:

$$w_{,xxx} + 2w_{,xxy} + w_{,yyy} + \frac{ph}{D} w_{,x} = 0 \quad (1)$$

where $D = \frac{Eh^3}{12(1-\nu^2)}$ is the cylindrical stiffness of the plate,
w is the plate deflection measured along the z axis, E is the modulus of elasticity and ν is Poisson's ratio of the plate material. Also, w_{xxxx} and w_{yyyy} are the fourth-order partial derivatives of w with respect to x and y respectively. By analogy, the other partial derivatives of w are written according to the independent variables. To investigate the vibration modes, the displacement is defined as time harmonic function as:

$$w(x,y,t) = \hat{w}(x,y)e^{i\omega t}$$ \hspace{1cm} (2)

where ω is the circular natural frequency. Substitution of (2) in (1) yields the equation governing the dynamic stationary free vibration behavior of Kirchhoff plates [16]-[17]-[18]:

$$\ddot{w}_{xxxx} + 2\ddot{w}_{xxyy} + \ddot{w}_{yyyy} - \lambda^2 \dddot{w} = 0$$ \hspace{1cm} (3)

where $\lambda^2 = \frac{p\omega^2}{D}$ is the plate natural frequency parameter.

Then by substitution from (4) and (5) into (3), the nodal equation of motion of isotropic plates is transformed to:

$$\begin{align*}
\left(\ddot{w}_{xxxx}\right)_{(i,j)} &= 2^2 \dddot{w} - \frac{2}{G^2}\left[\dddot{w}_{xxyy}(i,j) - 2(\dddot{w}_{xxyy}(i,j) + (\dddot{w}_{xxxx})(i,j))\right] \\
\left(\dddot{w}_{yyyy}\right)_{(i,j)} &= \frac{1}{G^2}\left[\dddot{w}_{yyyy}(i,j-2) - 4\dddot{w}_{yyyy}(i,j-1) + 6\dddot{w}_{yyyy}(i,j) - 4\dddot{w}_{yyyy}(i,j+1) + \dddot{w}(i,j+2)\right]
\end{align*}$$ \hspace{1cm} (4)

Trapezoidal rule is used as an integration method to solve the differential equation in x-direction, by which the derivatives applied at a point (i,j) are represented as:

$$\begin{align*}
\dddot{w}^{(n)}_{(i,j)} &= \dddot{w}_{(i,j)} + H \frac{2}{3} \left[\dddot{w}_{(i+1,j)} + \dddot{w}_{(i-1,j)}\right] \\
\dddot{w}^{(n)}_{(i,j+1)} &= \dddot{w}_{(i,j+1)} + H \frac{2}{3} \left[\dddot{w}_{(i,j+1)} + \dddot{w}_{(i,j)}\right]
\end{align*}$$ \hspace{1cm} (5)

The procedure of the step by step integration is illustrated by a flow chart diagram, see Fig. 2. This procedure can be explained in the following steps:

Step1: Initial Values at Starting Line $i = 1$

According to the proposed initial conditions at the edge $i = 1$, two quantities of $\dddot{w}_{(i,j)}$ and $\dddot{w}_{(i,j+1)}$ are known. The two other values have to be assumed. Here are $2M$ -initial values corresponding to $2M$ -homogenous solutions. Elementary, for one homogenous solution, only one non-trivial value of $2M$ -initial values is assumed while the other values are considered zeros. Applying (6) at any point (i,j), the magnitude of the fourth derivative $\left(\dddot{w}_{xxxx}\right)_{(i,j)}$ are determined at $i = 1$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Fig. 1 Model of stepped thickness plate}
\label{fig1}
\end{figure}
Fig. 2 Flow chart diagram of IVFD technique
Step 2: Trapezoidal Rules for Step by Step Integration Technique

Beginning with the assumption \(\left(\hat{w}_{ssss}(i,j) \right)_{0,i,j} = \left(\hat{w}_{ssss}(i,j) \right) \)

\(j = 1,2,3,...,M \) and using the trapezoidal rules of (7), one can calculate the first trial values of \(\left(\frac{\partial^2 w}{\partial x^2} \right)_{0,i,j} \), \(j = 1,2,3,...,M \) from the corresponding obtained values \(\left(\frac{\partial^2 w}{\partial x^2} \right)_{0,i,j} \);

\(\alpha = 0,1,2,3 \), \(j = 1,2,3,...,M \). Consequently by substituting the obtained quantities from trapezoidal rule into (6), the values of the fourth derivative \(\left(\hat{w}_{ssss}(i,j) \right) \) for all \(js \) can be determined at the current line.

Step 3: Iteration Technique

For the determined value of the fourth derivative \(\left(\hat{w}_{ssss}(i,j) \right) \), from (6), which is not coincident with the assumed one, the new determined value is taken as the assumed value. The procedure of step 2 has to be repeated for all \(j = 1,2,3,...,M \) until the deflection \(\hat{w} \) and their partial derivatives \(\frac{\partial^2 \hat{w}}{\partial x^\alpha} \), \(\alpha = 1,2,3 \), are calculated at the points of the terminal edge \(i = N \).

Step 4: Compatibility Conditions

Steps 2 and 3 are applied to the next lines until \(i = N_p \) is reached, where \(N_p \) is the line number at the sudden of plate.

Consequently, compatibility conditions [1]-[2]-[3] have to be applied at line \(i = N_r \). These conditions can be represented in the form:

\[
\begin{bmatrix}
\hat{w}(i,j) \\
\hat{\nu}(i,j) \\
M_s(x(i,j)) \\
V_s(x(i,j))
\end{bmatrix}
= \begin{bmatrix}
\hat{w}(i,j) \\
\hat{\nu}(i,j) \\
M_s(x(i,j)) \\
V_s(x(i,j))
\end{bmatrix}
\]

(8)

The suffixes \(p_1 \) and \(p_2 \) refer to the values before and values after the sudden step respectively. Expressing the moment and shear in finite differences forms, one gets [15]:

\[
\begin{bmatrix}
\hat{w}(i,j) \\
\hat{\nu}(i,j) \\
\hat{w}_s(x(i,j)) \\
\hat{w}_{ssss}(i,j)
\end{bmatrix}_{p_1} = \begin{bmatrix}
\hat{w}(i,j) \\
\hat{\nu}(i,j) \\
\hat{w}_s(x(i,j)) \\
\hat{w}_{ssss}(i,j)
\end{bmatrix}_{p_2} + \begin{bmatrix}
k^1 \hat{w}_s(x(i,j))_{p_1} + c_1 D_1 \\
k \hat{w}_{ssss}(i,j)_{p_1} + c_2 D_2
\end{bmatrix}
\]

(9)

where \(c_1 = \frac{(\alpha^3 - 1)\nu}{G^2} \), \(c_2 = \frac{(\alpha^3 - 1)(2 - \nu)}{G^2} \), \(k = \alpha^3 \), \(\alpha = \frac{h_1}{h_2} \)

The magnitude \(\alpha = \frac{h_1}{h_2} \) is the stepped plate thickness ratio and

\[
D_1 = [\hat{w}(i,j-1) + 2\hat{w}(i,j) - \hat{w}(i,j+1)],
\]

\[
D_2 = [\hat{w}(i,j+1) - 2\hat{w}(i,j) + \hat{w}(i,j-1)].
\]

The previous steps 2 and 3 are applied to the next lines \(i = N_p : N \) until the deflection \(\hat{w} \) and their partial derivatives \(\frac{\partial^2 \hat{w}}{\partial x^\alpha} \), \(\alpha = 1,2,3 \), are calculated at the points of the terminal edge \(i = N \).

Step 5: Superposition of Homogenous Solutions

Because of existing \(2M \)-assumed initial values at the beginning edge \(i = 1 \), the terminal boundary conditions are not satisfied for each homogenous solution. At the terminal edge \(i = N \), there are \(2M \)-homogeneous solutions (each homogenous solution corresponds each assumed initial value at point \((i,j) \)).

There are \(2M \)-sets of displacement quantities at the points \((i,j) \) of the mesh (each corresponds to one of the \(2M \)-assumed initial values). The superposition method is used to derive each individual solution. The true superimposed solution \(\hat{w}^{(s)} \) of plate is the sum of the \(2M \)-homogenous solutions such as:

\[
\hat{w}(s) = \sum_{s=1}^{2M} b_s \hat{w}_s^{(s)} ; s = 1,2,3,...,2M , \alpha = 0,1,2,3
\]

(10)

where:

\(\hat{w}_s^{(s)} \) is the \(\alpha \)-derivative of the displacement of the homogenous solutions and \(b_s \); \(s = 1,2,3,...,2M \) are unknown coefficients to be determined from the boundary conditions.

Step 6: Boundary Condition at the end Edge \(i = N \)

The individual solutions of the end edge \(i = N \) will not satisfy boundary condition, so it is necessary to force the superimposed solutions to coincide with the boundary conditions. For example, the boundary conditions for simply supported plate are:

\[
\hat{w}_s^{(0)} = \hat{w}_s^{(2)} = 0 ; j = 1,2,3,...,M
\]

(11)

The unknown \(b_s \); \(s = 1,2,3,...,2M \) factors can be determined by satisfying the boundary conditions of the terminal edge \(i = N \). Boundary conditions will be expressed in a matrix form such as:

\[
[R_s][b_s] = [0] ; s = 1,2,3,...,2M
\]

(12)

where \(R_s \) is \(2M \times 2M \) known matrix and \(b_s \) is \(2M \)-
unknown vector.

Step 7: The Circular Natural Frequency

For a non-trivial solution of (12), the determinant of \([R_s]\) must be zero[22]-[23]-[24]. All values that satisfy the zero determinant of \([R_s]\) are the natural frequencies \(\omega\) of the plate. The corresponding displacement of obtained natural frequency is the mode shape [25]-[26]-[27] such as:

\[
\hat{w}_{(i,j)} = \sum_{s=1}^{2M} b_s \hat{w}_s \quad ; s = 1, 2, 3, \ldots, 2M
\] (13)

III. FORMULATION OF THE BOUNDARY CONDITIONS

Boundary conditions, at the edges of the rectangular plate, are formulated in convenient forms to deal with the IVFD method. The assumed initial values at the initial edges are depending on the boundary conditions along this edge.

The assigned initial values at the first edge for all \(j_i\) for different boundary conditions [25] are:

i. **Simply supported plate edge, S.**
 a- At \((i = 1, N)\):
 \(\hat{w}_{(i,j)} = \hat{w}_{x(i,j)} = 0\)

 The other two magnitudes \(\hat{w}_{(i,j)}\), \(\hat{w}_{xx(i,j)}\) have to be assumed non-trivial values.

b- At \((j = 1, M)\):
 \(\hat{w}_{(i,j-1)} = -\hat{w}_{(i,j)}\) and \(\hat{w}_{(i,j)} = 0\)

ii. **Clamped supported plate edge, C.**
 a- At \((i = 1, N)\):
 \(\hat{w}_{(i,j)} = \hat{w}_{x(i,j)} = 0\)

 The other two magnitudes \(\hat{w}_{xx(i,j)}\), \(\hat{w}_{xxx(i,j)}\) have to be assumed non-trivial values.

b- At \((j = 1, M)\):
 \(\hat{w}_{(i,j-1)} = \hat{w}_{(i,j)}\) and \(\hat{w}_{(i,j)} = 0\)

iii. **Free plate edge, F.**
 For F-edges at \((i = 1, N)\), the values of \(V_{x(i,j)}\) and \(M_{x(i,j)}\) must be vanished. The magnitudes \(\hat{w}_{(i,j)}\) and \(\hat{w}_{xx(i,j)}\) at the initial edges, have to be assumed.

IV. NUMERICAL VERIFICATION AND DISCUSSION

Several natural frequency parameters of different modes are calculated for different cases of plate composed of two panels with unequal thickness and panel widths. Different aspect ratio \(\beta\), panel width ratio \(\gamma\) and various magnitude of thickness ratio \(\alpha\) are investigated. The natural frequency parameter is pointed out for every case where Poisson’s ratio is taken as \(\nu = 0.3\). Tables I and II show the values of normalized dimensionless natural frequency \(\Gamma_{\omega} = \left(\frac{\omega^2}{\pi^2}\right)\) parameter for two cases of boundary conditions of square plates SSSS and CSCS where S, C refers to simply supported and clamped edges respectively.

The plate panel width ratio is taken as \(\gamma = 0.5\) with different values of thickness ratio \(\alpha\). The obtained results are compared with the exact values showing good agreements.

TABLE I

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>(\alpha)</th>
<th>(\Gamma_{\omega}) Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSSS (\alpha = 0.5)</td>
<td>(\Gamma_1)</td>
<td>2.8168 2.9015 2.9015</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>7.0926 7.1156 7.1156</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>13.5798 13.7848 13.7850</td>
<td></td>
</tr>
<tr>
<td>CSCS (\alpha = 0.5)</td>
<td>(\Gamma_1)</td>
<td>4.0352 4.1711 4.1711</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>9.9327 9.9047 9.9047</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>17.8633 18.0453 18.0450</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>(\alpha)</th>
<th>(\Gamma_{\omega}) Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSSS (\alpha = \frac{2}{3})</td>
<td>(\Gamma_1)</td>
<td>2.4124 2.4470 2.4471</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>6.2622 6.2229 6.2229</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>11.8552 11.9124 11.9480</td>
<td></td>
</tr>
<tr>
<td>CSCS (\alpha = \frac{2}{3})</td>
<td>(\Gamma_1)</td>
<td>3.5094 3.5609 3.5610</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>8.7183 8.7199 8.7199</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>15.5305 15.6215 15.6210</td>
<td></td>
</tr>
</tbody>
</table>

The first fundamental natural frequency parameter for the case of full clamped plate is calculated when the thickness ratios \(\alpha\) vary from 0.1 to 1.0, and the panel width ratio is taken as \(\gamma = 0.75\), as shown in Table III. The results show that the natural frequency parameters increase by decreasing the thickness ratio \(\alpha\).

TABLE III

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\frac{\lambda^2}{\pi^2}) Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{11})</td>
<td>50.54 49.78 48.76 46.91 44.726</td>
</tr>
<tr>
<td>(\lambda_{12})</td>
<td>5.6 7.0 8.0 9.0 1.0</td>
</tr>
<tr>
<td>(\lambda_{13})</td>
<td>41.8 40.2 38.15 36.59 35.536</td>
</tr>
</tbody>
</table>

Another case is studied for CCCC square plate of Panel width ratio \(\gamma = 0.5\) and thickness ratio \(\alpha = 2.0\) for different aspect ratios \(\beta\) as shown in Table IV. As seen from the results, the
natural frequency parameter decreases whenever the aspect ratio increases.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\beta & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 \\
\hline
\lambda_{11}^2 & 22.5549 & 20.1156 & 18.649 & 17.6919 & 17.0598 \\
\lambda_{12}^2 & 49.8966 & 48.0585 & 47.4841 & 46.5267 & 46.0672 \\
\lambda_{22}^2 & 66.1331 & 59.0487 & 54.7599 & 51.122 & 51.1603 \\
\lambda_{11}^2 & 70.8815 & 55.1428 & 44.4972 & 38.1021 & 33.3154 \\
\lambda_{22}^2 & 86.5435 & 77.1999 & 68.1626 & 61.842 & 56.6745 \\
\hline
\end{array}
\]

The plate mode shapes of a full clamped CCCC plate with thickness ratios \(\alpha = 2.0\) and \(\alpha = 1.0\), panel width ratio \(\gamma = 0.5\) and aspect ratio \(\beta = 1.6\), are plotted as shown in Figs. 3-a,b and 4-a,b in the appendix.

V. CONCLUSION

The developed method is successfully applied to free vibration analysis of stepped thickness plates with different combinations of boundary conditions. It has been shown that the natural frequencies calculated using the IVFD method agrees closely with the results in the published literature. It has also been found that the solutions converge rapidly with the increase in the number of grid lines in the direction of the step-by-step integration technique. However, it is noticed that the number of the grid lines in the direction of the initial value method have to be chosen for the other direction of finite difference method. This is due to the efficiency of the two different techniques used in the two directions. The method can be developed to extend in the future work to deal with the dynamic problems of different shapes of plates as well as stepped plates with hollow and circular stepped plate.

APPENDIX

Fig. 3(a) 1st Mode shape of \(\lambda^2 = 26.1928\) and \(\alpha = 1.0\)

Fig. 3(b) 1st Mode shape of \(\lambda^2 = 18.649\) and \(\alpha = 2.0\)

Fig. 4(a) 2nd Mode shape of \(\lambda^2 = 37.9107\) and \(\alpha = 1.0\)

Fig. 4(b) 2nd Mode shape of \(\lambda^2 = 29.1031\) and \(\alpha = 2.0\)

REFERENCES

A. Ergun, N. Kurbasar, “A new approach of improved finite difference scheme on plate bending analysis”, Scientific research and essays vol.6(1), pp. 6-17, 2011.

I. Chern “Finite difference methods for solving differential equations”, Department of Mathematics, National Taiwan University, 2009.

J. Awrejcewicz “Numerical Analysis – Theory and Application”, Published by InTech, JanzeaTrdine 9, 51000 Rijeka, Croatia, 2011.

N. Baddour “Recent Advances in Vibrations Analysis”, Published by InTech, JanzeaTrdine 9, 51000 Rijeka, Croatia, 2011.

