A high order Theory for Functionally Graded Shell

V. V. Zozulya

Abstract—New theory for functionally graded (FG) shell based on expansion of the equations of elasticity for functionally graded materials (GFMs) into Legendre polynomials series has been developed. Stress and strain tensors, vectors of displacements, traction and body forces have been expanded into Legendre polynomials series in a thickness coordinate. In the same way functions that describe functionally graded relations has been also expanded. Thereby all equations of elasticity including Hook’s law have been transformed to corresponding equations for Fourier coefficients. Then system of differential equations in term of displacements and boundary conditions for Fourier coefficients has been obtained. Cases of the first and second approximations have been considered in more details. For obtained boundary-value problems solution finite element (FE) has been used of Numerical calculations have been done with Comsol Multiphysics and Matlab.

Keywords—Shell, FEM, FGM, Legendre polynomial

INTRODUCTION

RECENT years the FGMs have been applied in a science and engineering, as reflected in numerous papers [10, 11]. They are advantageous over classical homogeneous materials with only one material constituent, because GFMs consist of more material constituents and they combine the desirable properties of each constituent. As a representative example for GFMs, we just mention the metal/ceramic GFMs, which are compositionally graded from a ceramic phase to a metal phase. Metal/ceramic GFMs can incorporate advantageous properties of both ceramics and metals such as the excellent heat, wear, and corrosion resistances of ceramics and the high strength, high toughness, good machinability and bonding capability of metals without severe internal thermal stresses.

The FG thin-walled structures have numerous applications, especially in reactor vessels, turbines and many other applications in aerospace engineering [9]. Laminated composite materials are commonly used in many kinds of engineering structures. In conventional laminated composite structures, homogeneous elastic laminas are bonded together to obtain enhanced mechanical properties. However, the abrupt change in material properties across the interface between different materials can result in large interlaminar stresses leading to delamination [7]. One way to overcome these adverse effects is to use GFMs in which material properties vary continuously by gradually changing the volume fraction of the constituent materials. This eliminates interface problems of composite materials and thus the stress distributions are smooth.

Various theories of FG plates and shells have been developed last decades [1, 2, 4, 6, 13]. The material properties of FG plates and shells can be described by various functional relations. Most researchers use the power-law function, exponential function, or sigmoid function [1, 2, 6] to describe the volume fractions. Models of FG plates and shells are based on the Kirchhoff-Love, Timoshenko-Mindlin hypothesis or used more complicated high order theories. Mathematically rigorous and promising for engineering applications approach to creation high order hierarchical models of plates and shells is based on expansion of the 3-D equations of elasticity in Legendre polynomials series in term of thickness. Such an approach have been used widely for development various of isotropic [3, 12] and anisotropic [5] plates and shells. The method of Legendre polynomials series expansion has been used widely in our previous publications for development theory of thermoelasticity of plates and shells with considering close mechanical and thermal contact [14-25]. More specifically, problem of heat conducting and unilateral contact of plates and shell through the heat-conducting layer with considering a change of layer thickness in the process of the shell deformation has been formulated in [14-16, 20, 24, 25]. The developed approach have been applied to the laminated composite materials with possibility of delamination and thermoelastic contact in temperature field in [17, 18,], the pencil-thin nuclear fuel rods modeling in [19] and some other engineering problems in [21-23].

In this paper we are developing new theory for FG shells based on expansion of the equations of elasticity for GFMs into Legendre polynomials series. More specifically, we expanded functions that describe functionally graded relations into Legendre polynomials series and find Hook’s law that related Fourier coefficients for expansions of stress and strain Numerical examples are presented.

I. 3-D FORMULATION

Let a linear elastic body occupy an open in 3-D Euclidian space simply connected bounded domain $V \in \mathbb{R}^3$ with a smooth boundary ∂V. We assume that elastic body is inhomogeneous isotropic shell of arbitrary geometry with $2h$ thickness. The domain is $V = \Omega \times [-h, h]$ and it is embedded in in Euclidean space. Boundary of the shell can be presented in the form $\partial V = \Omega \cup \Omega' \cup S$. Here Ω is the middle surface of the shell, $2\Omega'$ is its boundary, Ω' and Ω' are the outer sides and $S = \Omega \times [-h, h]$ is a shear side.

Stress-strain state of the elastic body is defined by stress σ^ν and $e^\nu_{\delta\gamma}$ strain tensors and displacements u_ν, traction p_ν,

V. V. Zozulya is with the Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico (phone: 999-942-8330; fax: 999-981-3900; e-mail: zozulya@cicy.mx).
and body forces b_i vectors. These quantities are not independent, they are related by equations of elasticity.

For convenience we transform above equations of elasticity taking into account that the radius vector $\mathbf{R}(x)$ of any point in domain V, occupied by material points of shell may be presented as

$$\mathbf{R}(x) = \mathbf{r}(x_u) + x_u \mathbf{n}(x_u)$$ \hspace{1cm} (1)

where $\mathbf{r}(x_u)$ is the radius vector of the points located on the middle surface of shell, $\mathbf{n}(x_u)$ is a unit vector normal to the middle surface.

Let us consider that $x_u = (x^1, x^2)$ are curvilinear coordinates associated with main curvatures of the middle surface of the shell. In order to simplify 3-D equations of elasticity we introduce orthogonal system of coordinates related to main curvatures of the middle surface of the shell. Such coordinates are widely used in the shell theory. In this case the equations of equilibrium have the form

$$\begin{align*}
\frac{\partial (A_i \sigma_i)}{\partial x_i} + \frac{\partial (A_i \sigma_j)}{\partial x_j} + A_{ik} \frac{\partial \sigma_{kj}}{\partial x_i} + \tau_{ij} \frac{\partial A_i}{\partial x_j} + \\
+ \sigma_{ij} A_{k} \delta_{i, k} - \sigma_{j, i} A_{k} \delta_{j, k} + A_{ji} b_i = 0,
\end{align*}$$ \hspace{1cm} (2)

Cauchy relations have the form

$$\begin{align*}
\epsilon_{11} &= \frac{1}{A_1} \frac{\partial u_1}{\partial x_1} + \frac{1}{A_2} \frac{\partial u_2}{\partial x_2} + k_1 u_1, \\
\epsilon_{22} &= \frac{1}{A_2} \frac{\partial u_2}{\partial x_2} + \frac{1}{A_1} \frac{\partial u_1}{\partial x_1} + k_2 u_2, \\
\epsilon_{12} &= \frac{1}{A_1} \frac{\partial u_1}{\partial x_2} - \frac{1}{A_2} \frac{\partial u_2}{\partial x_1} + \frac{1}{A_1} \frac{\partial u_1}{\partial x_1} - \frac{1}{A_2} \frac{\partial u_2}{\partial x_2}, \\
\epsilon_{13} &= \frac{1}{A_2} \frac{\partial u_2}{\partial x_3} - k_3 u_2, \\
\epsilon_{23} &= \frac{1}{A_1} \frac{\partial u_1}{\partial x_3} - k_3 u_1 + \frac{1}{A_2} \frac{\partial u_2}{\partial x_3}.
\end{align*}$$ \hspace{1cm} (3)

Here $A_{ij}(x_1, x_2) = \sqrt{\mathbf{r}(x_1, x_2) \cdot \mathbf{r}(x_1, x_2)}$ are coefficients of the first quadratic form of the middle surface of the shell, $k_{ij}(x_1, x_2)$ are main curvatures.

In the case if inhomogeneous of the shell consists of gradation of the elastic modulus in the x_3 direction generalized Hook’s law for FG elastic shell we represent in the form

$$\sigma^0_{ij}(x) = c^0_{ijkl}(x) \epsilon_{ij}(x), \quad \epsilon^0_{ij}(x) = E(x) c^0_{ijkl}(x)$$ \hspace{1cm} (4)

where for isotropic shell

$$c^0_{ijkl} = L^2 \delta_{ij} \delta_{kl} + 2 \mu^0 \delta_{ik} \delta_{jl} + \lambda^0 = \frac{1}{2(1+\nu)} A^0 = \frac{2\mu^0}{(1-2\nu)}$$ \hspace{1cm} (5)

Substituting Cauchy relations (3) in Hook’s law (4) and then Hook’s law into equations of equilibrium (2) we obtain differential equations of equilibrium in the form of displacements

$$A_j(x) u_j(x) + b_j(x) = 0$$ \hspace{1cm} (6)

Here

$$A_j(x) = E(x) c^0_{ijkl} \partial_i \partial_j = E(x) A^0_{ij}$$ \hspace{1cm} (7)

where A^0_{ij} is a differential operator that correspond to the case of homogeneous equations of elasticity.

These equations will be used for elaboration of the 2-D equations for FG shells.

\textbf{II. 2-D FORMULATION}

If Let us expand the parameters, that describe stress-strain of the cylindrical shell in the Legendre polynomials series along the coordinate x_3.

$$u_i(x) = \sum_{k=0}^{\infty} u_i^k(x_3) P_k(\omega), \quad u^i(x_3) = \frac{2k+1}{2h} \int_{-h}^{h} u_i(x_u, x_3) P_k(\omega) dx_3, \quad \sigma^i_j(x) = \sum_{k=0}^{\infty} \sigma^i_k(x_3) P_k(\omega), \quad \lambda^i_j(x) = \frac{2k+1}{2h} \int_{-h}^{h} \lambda^i_j(x_u, x_3) P_k(\omega) dx_3, \quad \epsilon^i_j(x) = \sum_{k=0}^{\infty} \epsilon^i_k(x_3) P_k(\omega), \quad \epsilon^{ij}_k(x_3) = \frac{2k+1}{2h} \int_{-h}^{h} \epsilon^{ij}_k(x_u, x_3) P_k(\omega) dx_3, \quad p_i(x) = \sum_{k=0}^{\infty} p_i^k(x_3) P_k(\omega), \quad p^i(x) = \frac{2k+1}{2h} \int_{-h}^{h} p_i(x_u, x_3) P_k(\omega) dx_3, \quad b_i(x) = \sum_{k=0}^{\infty} b_i^k(x_3) P_k(\omega), \quad b^i(x) = \frac{2k+1}{2h} \int_{-h}^{h} b_i(x_u, x_3) P_k(\omega) dx_3.$$ \hspace{1cm} (8)

Substituting these expansions in equations (2)-(3) we obtain corresponding relations for Legendre polynomials series coefficients.

Equations of equilibrium have the form

$$\begin{align*}
\frac{\partial (A_i \sigma^{i}_{11})}{\partial x_1} + \frac{\partial (A_i \sigma^{i}_{12})}{\partial x_2} + A_{ik} \frac{\partial \sigma^{i}_{kk}}{\partial x_i} + \tau^{i}_{12} \frac{\partial A_i}{\partial x_2} + \\
- \sigma^{i}_{12} A_{k} \delta_{1, k} + A_{12} b_i = 0, \\
\frac{\partial (A_i \sigma^{i}_{22})}{\partial x_2} + \frac{\partial (A_i \sigma^{i}_{23})}{\partial x_3} + A_{ik} \frac{\partial \sigma^{i}_{kk}}{\partial x_2} + \tau^{i}_{23} \frac{\partial A_i}{\partial x_3} + \\
- \sigma^{i}_{23} A_{k} \delta_{2, k} + A_{23} b_i = 0, \\
\frac{\partial (A_i \sigma^{i}_{33})}{\partial x_3} + \frac{\partial (A_i \sigma^{i}_{31})}{\partial x_1} + A_{ik} \frac{\partial \sigma^{i}_{kk}}{\partial x_3} + \tau^{i}_{31} \frac{\partial A_i}{\partial x_1} + \\
- \sigma^{i}_{31} A_{k} \delta_{3, k} + A_{31} b_i = 0.
\end{align*}$$ \hspace{1cm} (9)
\[
\frac{\partial (A_i \sigma_{i}^x)}{\partial x_i} + \frac{\partial (A_i \sigma_{i}^y)}{\partial x_i} - \sigma_{i}^x A_i A_i k_i - \sigma_{i}^y A_i A_i k_i - \sigma_{i}^z A_i A_i k_i = 0.
\]

where

\[
\sigma_{i}^x(x_a) = A_i \frac{2k+1}{h} (\sigma_{i}^{+1} (x_a) + \sigma_{i}^{-1} (x_a) + \ldots),
\]

\[
f_i^x(x_a) = b_i^x (x_a) + \frac{2k+1}{h} (\sigma_{i}^{+1} (x_a) - (1)\sigma_{i}^{-1} (x_a)).
\]

Cauchy relations have the form

\[
\epsilon_{i}^x = \frac{1}{A_i} \frac{\partial u_i^x}{\partial x_i} + \frac{1}{A_i} \frac{\partial A_i}{\partial x_i} u_i^x + k_i u_i^x,
\]

\[
\epsilon_{i}^y = \frac{1}{A_i} \frac{\partial u_i^y}{\partial x_i} + \frac{1}{A_i} \frac{\partial A_i}{\partial x_i} u_i^y + k_i u_i^y,
\]

\[
\epsilon_{i}^z = \frac{1}{A_i} \frac{\partial u_i^z}{\partial x_i} + \frac{1}{A_i} \frac{\partial A_i}{\partial x_i} u_i^z + \frac{1}{A_i} \frac{\partial A_i}{\partial x_i} u_i^z + \frac{1}{A_i} \frac{\partial A_i}{\partial x_i} u_i^z.
\]

\[
\epsilon_{i}^x = \frac{1}{A_i} \frac{\partial u_i^x}{\partial x_i} - k_i u_i^x + u_i^x,
\]

\[
\epsilon_{i}^y = \frac{1}{A_i} \frac{\partial u_i^y}{\partial x_i} - k_i u_i^y + u_i^y + E_{i3} = u_i^z.
\]

In order to transform Hook’s law in 1-D form we expand Young’s \(E(x) \) in Legendre polynomials series

\[
E(x) = \sum_{i=1}^{\infty} E^i(x_a) P_i(x_c),
\]

\[
E^i(x_a) = \frac{2k+1}{2h} \int E(x_a, x_b) P_i(x_c) dx_b.
\]

Substituting this expansion and expansions for stress and strain tensors in Hook’s law we obtain 1-D Hook’s law for Legendre polynomials series coefficients

\[
\sigma_{i}^x(x_a) = \epsilon_{i}^x \sum_{i=1}^{\infty} E^i(x_a) \epsilon_{i}^x (x_a)
\]

where

\[
\epsilon_{i}^x = \sum_{i=1}^{\infty} P_i(x_c) P_i(x_b) P_i(x_c) dx_b
\]

Substituting Cauchy relations (11) and Hook’s law (14) in equations of equilibrium (9) we obtain differential equations in displacements. This system of equations contains infinite number of equations which are 2-D, they can be written in the form

\[
E \cdot (L \cdot u) = f
\]

where \(E_{ij} \) are differential operators that correspond to homogeneous elastic shells, \(E_{ij} = \epsilon_{ij}^\text{hom} E \) are coefficients that characterized inhomogeneous properties of the shell.

Now instead of one 3-D system of the differential equations in displacements (6) we have of 2-D infinite differential equations for coefficients of the Legendre’s polynomial series expansion. In order to simplify the problem approximate theory has to be developed and only finite set of members have to be taken into account in the expansion (8). Order of the system of equations depends on assumption regarding thickness distribution of the stress-strain parameters of the shell.

III. RESULTS AND DISCUSSION

We consider here the case of relatively thick shells. Therefore we will keep three members in polynomial expansion (8). In this case we will get the second order approximation equations for functionally graded shells. In this case the stress-strain parameters, which describe the state of the shell, can be presented in the form

\[
\sigma_{ij}(x) = \sigma_{ij}^0(x_a) P_0(\omega) + \sigma_{ij}^1(x_a) P_1(\omega) + \sigma_{ij}^2(x_a) P_2(\omega)
\]

\[
\epsilon_{ij}(x) = \epsilon_{ij}^0(x_a) P_0(\omega) + \epsilon_{ij}^1(x_a) P_1(\omega) + \epsilon_{ij}^2(x_a) P_2(\omega).
\]

Taking into account formulae (15) for the coefficients \(\epsilon_{ij}^\text{hom} \) the coefficients for the Legendre polynomials series expansion (15) has the form

\[
\sigma_{ij}^0(x_a) = \epsilon_{ij}^0 \left(2E_0^0 \epsilon_{ij}^0 + \frac{2}{3} E^i_1 \epsilon_{ij}^1 + \frac{2}{5} E^i_2 \epsilon_{ij}^2 \right),
\]

\[
\sigma_{ij}^1(x_a) = \epsilon_{ij}^0 \left(\frac{2}{3} E^i_1 \epsilon_{ij}^1 + \frac{2}{5} E^i_2 \epsilon_{ij}^2 \right),
\]

\[
\sigma_{ij}^2(x_a) = \epsilon_{ij}^0 \left(\frac{2}{5} E^i_1 \epsilon_{ij}^2 + \frac{4}{15} E^i_2 \epsilon_{ij}^2 \right).
\]

Now system of equations for displacements has the same form as (16), but it contains only four equations and corresponding matrixes and vector have the form

\[
E = \begin{bmatrix}
E_{i0}^{00} & E_{i0}^{01} & E_{i0}^{02} \\
E_{i0}^{10} & E_{i0}^{11} & E_{i0}^{12} \\
E_{i0}^{20} & E_{i0}^{21} & E_{i0}^{22}
\end{bmatrix}
\]

Here \(L_{ij}^{nm} \) are differential operators that correspond to homogeneous elastic shells, \(E_{ij} = \epsilon_{ij}^\text{hom} E \) are coefficients that characterized inhomogeneous properties of the shell.
respectively, the effective and

\[E_1^e = \frac{2}{3} E_1, \]

\[E_2^e = \frac{2}{3} E_2, \]

\[u_1^e = \frac{2}{3} u_1, \]

\[u_2^e = \frac{2}{3} u_2. \]

Numerical calculations have been done using commercial software Comsol Multiphysics and Matlab. Results of calculations are presented on Fig. 1 – Fig. 3.

Substituting these operators into (21) we obtain system of differential equations which together with corresponding boundary conditions can be used for the stress-strain calculation for the second approximation shell theory.

Material properties of FGM are the functions of volume fractions and they are managed by a volume fraction. When the shell is considered to consist of two materials with Young’s modulus \(E_1 \) and \(E_2 \), respectively, the effective Young’s modulus \(E(x) \) given by the following power-law expression

\[E(x) = (E_1 - E_2) \left(\frac{x_1 + x_2}{2} \right)^n + E_1 \quad (n \geq 0) \]

Substituting function (23) into equation (13) we obtain expressions for the Legendre polynomials coefficients for the effective Young’s modulus

\[E^l = \left(E_1 + E_2 \right) n \frac{E_1 - E_2}{1 + n} \left(E_1 - E_2 \right) \frac{n h}{2 + 3n + 3n^2} \]

For simplicity in this study we consider dimensionless coordinates \(\xi_i = \frac{x_i}{L} \) and \(\xi_j = \frac{x_j}{h} \) have been introduced. Calculations have been done for Young’s modulus equal to \(E_1 = 1 \) Pa and \(E_1 / E_2 = 2 \) and for Poisson ratio \(\nu = 0.3 \) respectively, other parameters are \(R = 0.25L \), \(h = 0.25R \) and \(n = 0.2 \). Numerical calculations have been done using commercial software Comsol Multiphysics and Matlab. Results of calculations are presented on Fig. 1 – Fig. 3.

Fig. 1 shows the Legendre polynomials coefficients for the displacements distribution versus the normalized length for the second approximation theory. These coefficients are FEM solutions of the systems of differential equations (16) with differential operators (22). Fig. 2 shows displacements and stresses distribution versus normalized length and thickness for second approximation theory.
IV. CONCLUSION

The high order theory for FG axisymmetric cylindrical shell based on expansion of the axisymmetric equations of elasticity for FMs into Legendre’s polynomials series has been developed. Starting from axisymmetric equations of elasticity for FGMs, the stress and strain tensors, vectors of displacements, traction and body forces and also function that describe functionally graded relations for Young’s modulus have been expanded into Legendre polynomials series in term of the shell thickness coordinate. Then all equations of elasticity including Hook’s law have been transformed to corresponding equations for the Legendre’s polynomials series expansion coefficients. The system of differential equations in term of displacements and boundary conditions for the coefficients of expansion has been obtained. Cases of the first and second approximations have been considered in more details. All necessary equations and heir coefficients has been written explicitly and corresponding boundary-value problems have been formulated. For numerical solution of the formulated problems finite element (FE) has been used and commercial software Comsol Multiphysics and Matlab have been used. For validation of the proposed theory and obtained equations comparison with results obtained using equations of elasticity has been done for exponential function for graduation law. Influence of different parameters on the stress-strain state of the cylindrical shell has been studied.

ACKNOWLEDGMENT

This work is supported by the German Research Foundation (DFG), which is gratefully acknowledged. Author also acknowledges the helpful advises by Professor Chuanzeng Zhang from the University of Siegen, Germany.

REFERENCES

[18] Zozulya V.V. Laminated shells with debonding between laminas in temperature field // International Applied Mechanics, 2006, 42(7), P. 842-848.

