Positive solutions of second-order singular differential equations in Banach space

Li Xiguang

Abstract—In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for the boundary value problem of second-order singular differential equations in Banach space, which improved and generalize the result of related paper.

Keywords—Banach space, cone, fixed point index, singular equation.

I. INTRODUCTION

The singular differential equation arises in a variety of applied mathematics and physics, the theory of singular differential equation is emerging as an important area of investigation since it is much richer than the corresponding theory of concerning equation without singular. In recent years, some new results concerning the Dirichlet boundary value problem of singular differential equation have been obtained by a variety of method ([1]-[5]). In thesis [6-7] the author investigate the singular equation

\[
\begin{align*}
\begin{cases}
 x''(t) + f(t,x(t)) &= \theta, \\ x(0) &= \theta, x(1) &= \theta,
\end{cases}
\end{align*}
\]

the nonlinear term \(f(t,x) \) may be singular at \(t = 0 \) and \(x = 0 \), \(\theta \) is zero element of real Banach space \(E \). Motivated by the work of thesis [6-7], the present paper investigates the existence of positive solution for the general boundary value problem of the differential equation (we call it BVP(1)).

\[
\begin{align*}
\begin{cases}
 x''(t) + f(t,x(t)) &= \theta, \\ ax(0) - bx'(0) &= \theta, \\ cx(1) + dx'(1) &= \theta
\end{cases}
\end{align*}
\]

where \(a > 0, c > 0, b \geq 0, d \geq 0 \). Our approaches are method of fixed point index theory and a new constructed cone. The organization of this paper is as follows, we shall introduce some definitions and lemmas in the rest of this section. The main result will be stated and proved in section 2. Finally, we give some examples to demonstrate our main result. Let \(E \) be a real Banach space, \(J = [0,1] \), \(P \) is a regular cone in \(E \). Let the regular constant \(c = 1 \), we consider BVP (1) in \(C([J,E], \), for \(\forall x \in C([J,E], \) let \(\|x\|_e = \max_{t \in J} \|x(t)\| \), then \((C([J,E], \|\cdot\|_e) \) is a real Banach space.

Definition 1.1 A map \(x \in C([J,E] \cap C^2([0,1], E) \) is said to be a solution of (1) if it satisfies equation (1). If \(\|x\|_e > 0 \), then \(x \) is called positive solution. Suppose \(x(t) \in C(J,E) \) is continuous, if \(\lim_{\varepsilon \to 0^+} \int_0^1 x(t)dt \) exist, we call \(\int_0^1 x(t)dt \) is convergence in abstract space. Denotes \(\alpha \) the Kuratowski noncompactness measure in \(E \), \(\alpha_\varepsilon(\cdot) \) and \(\alpha_\varepsilon(\cdot) \) the Kuratowski noncompactness measure in \(E \) and \(C([J,E] \) respectively.

Lemma 1.1 Suppose \(\alpha \in C([J,E] \) is a bounded and equicontinuous set on \(J \), then \(\alpha_\varepsilon(\cdot) = \sup_{t \in J} \alpha_\varepsilon(S(t)) \), where

\[
S(t) = \{x(t) : x \in S\}.
\]

Lemma 1.2 Suppose \(P \) is a regular and solid cone in Banach space, \(P_\varepsilon = \{ x \in P : \|x\| < r \} \), \(F : P_\varepsilon \to P \) is strictly set contraction, if for \(\forall x \in \partial P_\varepsilon \) and \(k \geq 0, u_0 \in P_\varepsilon \), we have

\[
x - Fx \neq \lambda u_0, \quad \varepsilon(p,F) = 0.
\]

Lemma 1.3 Suppose \(P \) is a cone in Banach space, \(P_\varepsilon = \{ x \in P : \|x\| < r \} \), \(F : P_\varepsilon \to P \) is a strictly set contraction, \(Fx = \lambda x; \forall x \in \partial P_\varepsilon \Rightarrow \lambda < 1 \), then \(\varepsilon(p,F) = 1 \).

Lemma 1.4 Suppose \(V = \{x_0 \in L[0,1] \), there exist \(g \in L[0,1] \), for all \(x_0 \in V \) and bounded set \(d \in \partial P_\varepsilon \),

\[
\int_0^1 \alpha_\varepsilon(V(s))ds \leq 2 \int_0^1 \alpha_\varepsilon(V(s))ds.
\]

II. CONCLUSION

For convenience, we list the following assumptions:

(H1) Let \(f(t) = c + d - ct, \psi(t) = b + at, \psi_t \in [0,1] \), suppose \(f \in C([0,1] \times P, P) \) with \(\|f(t)\| \leq k(t)\|q(x)\| \), where \(k : (0,1) \to (0, +\infty) \) satisfying \(\int_0^1 \varphi(t)\psi_1(k(s))ds < +\infty \), and \(q \in C[P, P] \).

(H2) \(\rho = a + d - \rho \psi_1, G(s,s) = \varphi_1(s) \psi_1(s), q_r, R_1 = \|q_r(x)\| < +\infty \). For any \(R_1 > r_1 > 0 \), suppose \(x \in P_{\rho_1} \), \(\int_0^1 G(s,s)k(s)\varphi_1(R_1)ds < +\infty \), and there exists \(R > 0 \) such that \(\int_0^1 G(s,s)k(s)\varphi_1(R_1)ds < R \), and \(g \in C[P, P] \).

(H3) \(f(t,x) \) is continuous uniformly on \([\alpha, 1-\delta] \times \partial P_\varepsilon \), where \(\delta \in (0, 1) \).

(H4) \(\forall t \in (0,1) \) and bounded set \(D \subset \partial P_\varepsilon \), there exists an \(L < 0 \) such that \(\alpha(f(t,D)) \leq 2ac \).

(H5) \(\exists h \in P^+, \|h\| = 1, h \in L[0,1] \) such that \(\lim_{t \to 0} h(t) \) holds uniformly with respect to \(t \in (0,1) \), and \(\int_{t=0}^1 G(s,s)h(s)ds < +\infty \), where \(P^+ \) is a dual cone of \(P \).

(H6) \(\exists h \in P^+, k^* = 1, [s_1, s_2] \subset [0,1] \) such that \(\lim_{t \to 0} h(t) \) holds uniformly with \(\|x\|_e \).
respect to \(t \in [s_1, s_2] \).

The following theorem is our main result.

Theorem 2.1 Suppose that conditions \((H_1) - (H_6)\) hold, then there exists \(r \in (0, R) \) such that BVP (1) has positive solution \(x \in K_R \setminus K_r \) and \(y \in K \setminus K_R \) respectively.

Before giving the proof of Theorem 2.1, we list some preliminaries and prove some lemmas. We first consider the following equivalence problem of BVP (1).

\[
Ax(t) = \int_0^1 G(t,s)f(s,x(s))ds
\]

where

\[
G(t,s) = \begin{cases}
\frac{\varphi(t)\psi(s)}{\rho}, & 0 \leq s \leq t \\
\frac{\varphi(s)\psi(t)}{\rho}, & 0 \leq t \leq s \\
\end{cases}
\]

\[
\varphi(t) = c + d - ct, \quad \psi(t) = b + at, \quad \rho = ac + ad + bc.
\]

It is clear that \(x \in C[J,E] \cap C^2((0,1), E) \) is a solution of BVP (1) if and only if \(x \in C[J,E], \) so we only need to show \(A \) has a nontrivial fixed point \(x \in C[J,E], \).

In order to overcome the difficulty caused by singular, we construct a special cone:

\[
K = \{ x \in C[J,P] : \| x \| \leq \varphi(t)\psi(t) - \rho + bd \}_{x(s)}.
\]

where \(t, s \in J, \) obviously \(K \) is a cone in \(C[J,E]. \) Now we show \(AK \subseteq K. \) Note \(G(t,s) \leq \psi(s)\psi(t) = G(s,s), 0 \leq t, s \leq 1, \) and

\[
G(t,\tau) \geq \frac{\varphi(t)\psi(\tau)}{\rho + bd}, \quad \text{if} \quad x \in K, \quad \text{then}
\]

\[
Ax(t) = \int_0^1 G(t,\tau)f(\tau, x(\tau))d\tau
\]

\[
\geq \frac{\varphi(t)\psi(\tau)}{\rho + bd} \int_0^1 G(s,\tau)f(\tau, x(\tau))d\tau,
\]

so \(Ax(t) \geq \frac{\varphi(t)\psi(\tau)}{\rho + bd} \) is a continuous and bounded operator from \(K_r \) to \(K. \) Let \(x_m \in K, m \to +\infty, \) on account of \(H_1, \) for \(\forall m, \forall s \in J \) we have

\[
\| f(s, x_m(s)) \| \leq k(s)q[0, r],
\]

so by \((H_1) - (H_2)\) we know \(\lim_{m \to +\infty} (Ax_m)(t) = (Ax)(t), \) meanwhile by (5) we can see \(\{ Ax_m(t) \}_{m \geq 1} \) is equicontinuous family on \(J, \) so we should get

\[
\lim_{m \to +\infty} \| Ax_m - Ax \| = 0.
\]

In fact, if this is false, then there exist \(\varepsilon_0 > 0 \) and \(\{ x_m \} \subset \{ x_n \} \) such that \(\| Ax_m - Ax \| \geq \varepsilon_0 (i = 1, 2, \ldots) \), since \(\{ Ax_m \} \) is relatively compact in \(C[J,E], \) the relative compactness of \(\{ Ax_m \} \) implies that \(\{ Ax_m \} \) contains a subsequence which converges to some \(y \in K, \) no loss of generality we may assume that \(\lim_{m \to +\infty} Ax_m = y, \) i.e.

\[
\lim_{m \to +\infty} \| Ax_m - y \| = 0,
\]

obviously this is in contradiction with \(y = Ax, \) so \(A \) is continuous.

On the other hand, by virtue of \((H_1) - (H_2)\) and the inequality (5), we know \(A \) is bounded from \(K_r \) to \(K. \)

Lemma 2.2 Suppose \((H_1) - (H_4)\) hold, then for \(\forall r > 0, \) \(A \) is strictly set contraction from \(K_r \) to \(K. \)

Proof For \(\forall r > 0, \) suppose \(S \subseteq K_r, \) by virtue of lemma 2.1 we know \(AS \) is bounded set and equicontinuous on \(J, \) by lemma 1.1 we know

\[
\alpha_c(AS(t)) = \sup_{\rho \in J} \alpha_c(AS(t))
\]

where

\[
AS(t) = \{ Ax(t) : x \in S, t \in J \},
\]

\[
D_\delta = \{ \int_0^1 G(t,s)f(s,x(s))ds : x \in S, \delta \in (0, \frac{1}{2}) \},
\]

by virtue of \((H_1) - (H_2), (6)-(7), \) we know the Hausdorff distance of \(D_\delta \) and \(\{ AS(t) \} \)

\[
d_H(D_\delta, AS) \to 0, \quad \delta \to 0^+.
\]

so

\[
\alpha(AS) = \lim_{\delta \to 0^+} \alpha(D_\delta).
\]

Next we estimate \(\alpha(D_\delta), \) because

\[
\int_0^1 G(t,s)f(s,x(s))ds \in (1 - 2\delta)\overline{\rho}(G(t,s)f(s,x(s)) : x \in K, s \in [\delta, 1 - \delta])
\]

so by \((H_1) - (H_3)\) and \((9.4.11) \) in therein [8] we obtain

\[
\alpha(D_\delta) = \alpha(\{ \int_0^1 G(t,s)f(s,x(s))ds : x \in S \})
\]

\[
\leq (1 - 2\delta)\overline{\rho}(G(t,s)f(s,x(s)) : x \in K, s \in [\delta, 1 - \delta])
\]

\[
\leq \alpha(\{ G(t,s)f(s,x(s)) : x \in K, s \in [\delta, 1 - \delta] \})
\]

\[
\leq \frac{\overline{\rho}}{4ac} \max \{ \alpha(S(I_\delta)) \}
\]

\[
\leq \frac{1}{2} \overline{\rho}(S(1))
\]

\[
\leq \frac{1}{2} \overline{\rho}(S), I_\delta = [\delta, 1 - \delta].
\]

Note (8), let \(\delta \to 0 \) when \(\alpha_c(S) \neq 0, \) we have

\[
\alpha(AS) = \frac{1}{2} \overline{\rho}(S) < \alpha_c(S), \quad \text{so} \quad A \quad \text{is strict set contraction.}
\]

Now we give the proof of theorem 2.1.
Proof: By virtue of (H2), for \(\forall t \in (0, 1) \) we have
\[
0 < \int_0^1 G(t, s)h(s)ds \leq \int_0^1 G(s, s)h(s)ds, \text{ otherwise}
\]
h(s) = 0, a.e. s \in J. Chose \(\varepsilon > 0 \) sufficiently small such that
\[
r' = \int_0^1 \int_0^1 G(t, s)(h(s) - \varepsilon')dsdt > 0. \quad (10)
\]
by (H2), there exists \(\varepsilon'' \in (0, R) \) when \(\|x\|_e \leq \varepsilon'' \), for \(\forall t \in (0, 1) \), we have
\[
h^*(f(t, x(t))) \geq h^*(s) - \varepsilon'.
\]
(11)
take \(0 < r < l = \min\{r', \varepsilon''\} \), for all \(x \in \partial K_r, \lambda \geq 0 \), we have
\[
x - A(x) \neq \lambda e, \text{ where } e \in P, e \neq 0. \text{ In fact, if it is false, then there exists } \lambda \geq 0, x \in \partial K_1 \text{ such that } x - A(x) = \lambda e, \text{ i.e.}
\]
\[
x(t) = Ax(t) + \lambda e \geq \int_0^1 G(t, s)f(s, x(s))ds, \text{ consequently by (11) we can get}
\]
\[
h^*(f(t, x(t))) \geq \int_0^1 G(t, s)h^*(s)ds \geq \int_0^1 G(t, s)(h(s) - \varepsilon')dsdt \text{ by (10) and (12), we have}
\]
\[
\begin{align*}
\int_0^1 h^*(x(t))dt & \geq \int_0^1 \int_0^1 G(t, s)(h(s) - \varepsilon')dsdt = r' > r. \\
\end{align*}
\]
(13)
But for \(\forall t \in J, \) since \(h^*(x(t)) \leq \|x(t)\| \leq \|x\|_e \) remains the same, it is in contradiction with (13). According to lemma 1.2, we have
\[
i(A, K_r, K) = 0. \quad (14)
\]
Next by (H2) we will show \(i(A, K_r, K) = 1, \) by the homotopy invariance of fixed point index, we only need to show: for \(\forall x \in \partial K_R \) and \(\lambda \geq 1, \) \(Ax \neq Ax. \)
In fact, if it is false, then there exist \(x \in \partial K_R \) and some \(\lambda \geq 1 \) such that \(Ax = \lambda x, \) then \(x = \frac{1}{\lambda} Ax, \) therefore by (2) we know, for \(\forall t \in (0, 1), \) we have
\[
x(t) = \frac{1}{\lambda x} \{c(1-t) + d(\int_0^1 (as + b)f(s, x(s))ds)\}
\]
\[+ \frac{a}{\lambda x} \{(at + b)\int_0^1 c(1-s) + d|f(s, x(s))|ds\},
\]
therefore
\[
x'(t) = \frac{1}{\lambda x} \int_0^1 (-c)(as + b)f(s, x(s))ds
\]
\[+ \frac{a}{\lambda x} \int_0^1 c(1-s) + d|f(s, x(s))|ds
\]
\[
\leq \frac{a}{\lambda x} \int_0^1 c(1-s) + d|f(s, x(s))|ds,
\]
(where \(\leq \) is partial order induced by cone.) So for \(\forall t \in J, \) we have
\[
0 \leq x(t) \leq \frac{a}{\lambda x} \int_0^1 \int_0^1 |c(1-s) + d|f(s, x(s))dsdt
\]
\[+ \frac{b}{\lambda x} \int_0^1 c(1-s) + d|f(s, x(s))|ds
\]
\[
= \frac{1}{\lambda} \int_0^1 (as + b)|c(1-s) + d|f(s, x(s))ds
\]
\[= \frac{1}{\lambda} \int_0^1 G(s, s)f(s, x(s))ds,
\]
so
\[
R = \|x\|_e = \max_{t \in J} \|x(t)\|
\]
\[
\leq \frac{1}{\lambda} \int_0^1 G(s, s)k(s)|\frac{\varphi(s)\psi(s)}{\rho + bd}|R, Rd ds
\]
\[
\leq \frac{1}{\lambda} \int_0^1 G(s, s)k(s)q|\frac{\varphi(s)\psi(s)}{\rho + bd}|R, Rd ds
\]
\[
< R.
\]
This is in contradiction with (H2), so we have
\[
i(A, K_r, K) = 1. \quad (15)
\]
Select \(R > \max_{t \in J} \left[\frac{(b + as_1)(c + d - cs_2)}{\rho + bd} \int_0^1 G(t, s)ds \right]^{-1}, \) by (H6), for \(x > N, \) there exists \(N > R \) such that \(k^*(f(t, x)) \geq R \|x\| \), let \(\overline{R} = R + 1 \) then for \(\forall x \in \partial K_{\overline{R}}, \lambda \geq 0, \) we have \(x - A(x) \neq \lambda e. \) In fact, if there exist \(\lambda \geq 0, x \in \partial K_{\overline{R}} \) such that \(x - A(x) = \lambda e \) then
\[
\overline{R} \geq k^*(x(t)) \geq k^*(Ax(t))
\]
\[
\geq \int_0^1 G(t, s)k^*(f(s, x(s)))ds
\]
\[
\geq \int_{s_1}^{s_2} G(t, s)k^*(f(s, x(s)))ds
\]
\[
\geq R \int_{s_1}^{s_2} G(t, s)|x(s)|ds
\]
\[
\geq R \int_{s_1}^{s_2} G(t, s)\frac{(b + as_1)(c + d - cs_2)}{\rho + bd}\|x\|ds
\]
\[
> \overline{R}.
\]
This is a contradiction, so by lemma 1.2,
\[
i(A, K_{\overline{R}}, K) = 0.
\]
Moreover, by (14)(15), we can see
\[
i(A, K_R \setminus K_{\overline{R}}, K) = i(A, K_R, K) - i(A, K_{\overline{R}}, K) = 1,
\]
\[
i(A, K_{\overline{R}} \setminus \overline{K_R}, K) = i(A, K_{\overline{R}}, K) - i(A, K_R, K) = -1.
\]
So \(A \) has fixed point \(x \in K_R \setminus K_{\overline{R}} \) and \(y \in K \setminus K_{\overline{R}} \) respectively.
Finally we show \(x \neq y, \) we only need to show \(A \) has not fixed point in \(\partial K_R. \) Otherwise, assume \(z \in \partial K_R \) is a fixed point, so when \(t \in J, \) \(z(t) = \int_0^1 G(t, s)(f(s, z(s)))ds \) and
\[R = \|z(t)\| \geq \frac{(b+at)(c+d-et)}{\rho + bd} R. \]

By \((H_1) - (H_2)\) we have
\[
R = \max_{t \in J} \|z(t)\| \\
\leq \int_0^1 G(t,s)k(s)q(s)\frac{\varphi(s)\psi(s)}{\rho + bd} R, R|ds \\
\leq \int_0^1 G(s,s)k(s)q(s)\frac{\varphi(s)\psi(s)}{\rho + bd} R, R|ds \\
< R.
\]

This is a contradiction, and our conclusion follows. □

Corollary Suppose conditions \((H_1) - (H_5)\) hold, or conditions \((H_1) - (H_4)\) and \((H_6)\) hold, BVP (1.1) has at least one positive solution.

Example: Suppose \(E = l^\infty = \{x = (x_1, x_2, \ldots, x_n, \ldots) : \sup_n|x_n| < +\infty\}\), for \(x \in E\), let \(\|x\| = \sup_n|x_n|\), then \((E, \|\|)\) is a Banach space, and \(P = \{x \in E : x_n \geq 0, n = 1, 2, \ldots\}\) is a regular cone in \(E\), let the regular constant \(c = 1\), we consider the following equations in \(E\)
\[
\begin{align*}
-x''(t) &= \frac{\cos t}{\sqrt{t(t-1)}}(1 + \frac{1}{n}(tx_{2n} + \ln(1 + x_n))), \\
x_n(0) &= x_n(1) = 0, n = 1, 2, \ldots
\end{align*}
\]

(16) problem (16) can be think as the type of BVP(1), it is equivalent to \(x(t) = (x_1(t), x_2(t), \ldots), f(t) = (f_1(t), f_2(t), \ldots)\);
\(f_n(t, x) = \frac{1}{\sqrt{t(t-1)}}(1 + \frac{1}{n}(tx_{2n} + \ln(1 + x_n)))\), we can see \(f(t, x)\) is singular at \(t = 0, 1\). Now we check \(H_1 - H_5\) hold.

Choose \(k(t) = \frac{1}{\sqrt{t(t-1)}}, q(x) = (q_1(x), q_2(x), \ldots), q_n(x) = 1 + \frac{1}{n}(tx_{2n} + \ln(1 + x_n))\) for \(\forall R_1 > r_1 > 0\), it is easy to get
\[q[r_1, R_1] = \sup_{x \in \mathcal{P}_{R_1} \setminus R_1} \|q(x)\| \leq 1 + R_1 + \ln(1 + R_1).\]

Since
\[
\int_0^1 \sqrt{s(1-s)}ds = \frac{\pi}{8}, \int_0^1 \frac{ds}{\sqrt{s(1-s)}} = \pi,
\]

therefore
\[
\int_0^1 s(1-s)k(s)q(s)\|s(1-s)r_1, R_1|ds \leq \frac{\pi}{8}(1 + R_1 + \ln(1 + R_1)) < +\infty.
\]

It is easy to see, if \(R\) is sufficiently large then
\[
\int_0^1 s(1-s)k(s)q(s)s(1-s)R, R|ds < R\] hold, so \(H_1, H_2\) hold, obviously \(H_3\) hold, for \(\forall t \in (0, 1)\), we give a bounded sequence \(\{x^n\} \subset \mathcal{P}_{R_1} \setminus R_1\) using diagonal rule, we can choose a convergent subsequence from \(\{f(t, x^{(n)})\}\) (where \(R_1 > r_1 > 0\) is arbitrary), so \(H_4\) hold, and it is equivalent to the case \(L = 0\). Choose \(h^* \in \mathcal{P}\) such that \(h^*(x) = x_1\), so \(H_5\) hold. To sum up, \(H_1 - H_5\) hold, by the Corollary of theorem 2.1, we know problem (16) has at least one positive solution.

REFERENCES

