The Role of Ga(Gallium)-flux and AlN(Aluminum Nitride) as the Interface Materials, between (Ga-face)GaN and (Si-face)4H-SiC, through Molecular Dynamics Simulation

Srikanta Bose* and Sudip K. Mazumder

Abstract—We report here, the results of molecular dynamics simulation of p-doped (Ga-face)GaN over n-doped (Si-face)(0001)4H-SiC hetero-epitaxial material system with one-layer each of Ga-flux and (Al-face)AlN, as the interface materials, in the form of, the total Density of States (DOS). It is found that the total DOS at the Fermi-level for the heavily p-doped (Ga-face)GaN and n-doped (Si-face)4H-SiC hetero-epitaxial system, with one layer of (Al-face)AlN as the interface material, is comparatively higher than that of the various cases studied, indicating that there could be good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4H-SiC hetero-epitaxial material system.

Keywords—Molecular dynamics, GaN, 4H-SiC, hetero-epitaxy.

I. INTRODUCTION

GaN and 4H-SiC as bulk materials (both have Space Group of P63mc (186) with hexagonal Wurzite structure) offer great potentials for high-temperature and power-electronics applications due to their attractive material properties such as large bandgap energies, high breakdown fields and high thermal conductivities [1]-[4]. In addition, GaN has very good optical absorption coefficient and short carrier life time [1]- [4]. It would be preferable, if we have a semiconductor device which can possess excellent power handling capabilities, high thermal capacity and also can be optically controlled efficiently, to avoid any electro-magnetic-interference (EMI). In order to retain above qualities in a single device, direct hetero-epitaxial growth of GaN over 4H-SiC and vertical conduction, is the possible answer and we have already observed quite interesting features in our preliminary investigated simulation results [5], for a vertical npn-device, using above two materials.

The materials, GaN and 4H-SiC have a lattice mismatch of ~3.4%. So, to avoid this lattice mismatch, researchers have tried to grow GaN epitaxy, over a buffer layer of AlN [6]-[8] and studied the lateral conduction, which is entirely through GaN.

But, investigations on vertical conduction are rarely available in the literatures [9]-[16]. In lateral devices, only the properties of GaN are exploited, however if we want to exploit the properties of 4H-SiC, as well, which are highly suitable for power-electronics applications, a vertical conduction approach has to be made. This is possible, if we can grow GaN directly above 4H-SiC without any buffer layer. To achieve this, Ga-flux has been used over (Si-face)(0001)4H-SiC, experimentally [15], [16], before actually growing GaN epitaxial layers.

In this work, we report, the total Density of States (DOS), for the p-doped (Ga-face)GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system with Ga-flux and (Al-face)AlN, as the interface materials, from the atomistic standpoint, by carrying out Molecular Dynamics simulations, using DMol3 first-principle atomistic simulator [17] module of Material studio 5.0 [18], with the help of NCSA (National Center for Supercomputing Applications at University of Illinois Urbana-Champaign, US) Intel 64 Cluster Abe [19].

II. SIMULATION METHOD

While performing the Molecular Dynamics simulation (the supercell approach was adopted where the total no. of atoms in the cell was kept sixty and the atoms in (Si-face)4H-SiC were constrained whereas Ga, Al and N atoms were relaxed), the following major considerations were set in the DMol3 first-principle atomistic simulator:

- Ensemble: NVT
- DFT exchange-correlation: LDA/PWC
- Thermostat: Simple Nose-Hoover
- External stress: 0 GPa
- Temperature: 800 K (This value of temperature was considered in view of experimental setting [15], [16])
- Given simulation time: 0.5 ps
- Core-treatment: All-electron with Harris approximation
- K-point set: Medium

III. RESULTS AND DISCUSSION

Fig. 1 shows a typical initial setup for Molecular Dynamics simulation for Ga-fluxed p-doped GaN over heavily n-doped (Si-face)4H-SiC hetero-epitaxial material system. Figs. 2(a),
2(b), and 2(c) show the total density of states (DOS) of p-doped GaN over n-doped (Si-face)4H-SiC, heavily p-doped GaN over n-doped (Si-face)4H-SiC, p-doped GaN over heavily n-doped (Si-face)4H-SiC, hetero-epitaxial material systems, with one-layer of Ga-flux as the interface material whereas Figs. 3(a), 3(b), and 3(c) show the total density of states (DOS) of p-doped GaN over n-doped (Si-face)4H-SiC, heavily p-doped GaN over n-doped (Si-face)4H-SiC, p-doped GaN over heavily n-doped (Si-face)4H-SiC, hetero-epitaxial material systems, with one-layer of (Al-face)AlN as the interface material. We replace the Ga-site with one Magnesium(Mg) atom for p-doped GaN and two Mg atoms for heavily p-doped GaN and similarly, C-site of 4H-SiC is replaced with one Nitrogen(N) atom for n-doped 4H-SiC and two N atoms for heavily n-doped (Si-face)4H-SiC. The energy unit has been converted from Hartree to ElectronVolt (1 Ha = ~ 27.2 eV) while reporting the DOS value.

Fig. 3(b) shows the maximum DOS at the Fermi-level for heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material. The element Mg has valence electrons in 3s^23p^03d^0. That means the p and d-orbitals are vacant which means, these are holes (or minority carrier density) ready to be occupied by electrons. The maximum no. of electrons that can be accommodated in p and d-orbitals are 6 and 10, respectively. So, the minority carrier density is quite high in case of Mg-dopant. The element N has valence electrons in 2s^22p^3, which means there are 3 unpaired electrons available out of which 2 will go to Si so that it can satisfy the Octet. So, the element N is left with 1 electron which will act as free electron i.e., the majority carrier density is quite low in case of N-dopant. The element Ga has valence electrons in 4s^24p^14d^04f^0. In case of Ga-flux p+-n hetero-epitaxial material system, the one unpaired electron from Ga will either go to Si or Mg, thereby reducing the DOS. In the absence of AlN, the p+-n hetero-epitaxial material system, has 2 Mg-dopant atoms whose p and d orbitals vacant and only one N-dopant atom. Since no free electrons are available in the one-layer of (Al-face)AlN material, it does not affect the DOS of the hetero-epitaxial material system and prevents the one freely available electron of N-dopant of 4H-SiC to be shared either by Mg-dopant or Ga of GaN.

IV. CONCLUSION

We have carried out the molecular dynamics simulation and provided the theoretical explanations in terms of total Density of States (DOS), for p-doped GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system with Ga-flux and (Al-face)AlN as the interface materials. We observed that the total DOS at the Fermi-level for heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material, exceeds the various other doped cases, signifying that there is a possibility of good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4H-SiC hetero-epitaxial material system with one-layer of (Al-face)AlN, as the interface material.

ACKNOWLEDGMENT

We are thankful to National Science Foundation (NSF), US (Award No: 0823983) for necessary financial support.
Fig. 2(b) The total density of states (DOS) of heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of Ga-flux as the interface material.

Fig. 2(c) The total density of states (DOS) of p-doped GaN over heavily n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of Ga-flux, as the interface material.

Fig. 3(a) The total density of states (DOS) of p-doped GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of Al-facing AlN as the interface material.

Fig. 3(b) The total density of states (DOS) of heavily p-doped GaN over n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material.
Fig. 3(c) The total density of states (DOS) of p-doped GaN over heavily n-doped (Si-face)4H-SiC hetero-epitaxial material system, with one-layer of (Al-face)AlN as the interface material.

REFERENCES