Logic Program for Authorizations

Yun Bai

Abstract—As a security mechanism, authorization is to provide access control to the system resources according to the polices and rules specified by the security strategies. Either by update or in the initial specification, conflicts in authorization is an issue needs to be solved. In this paper, we propose a new approach to solve conflict by using prioritized logic programs and discuss the uniqueness of its answer set. Addressing conflict resolution from logic programming viewpoint and the uniqueness analysis of the answer set provide a novel, efficient approach for authorization conflict resolution.

Keywords—authorization, formal specification, conflict resolution, prioritized logic program.

I. INTRODUCTION

Authorization plays an essential role to ensure the security of a wide variety of computing and IT systems such as data management systems, e-trading systems, database transaction systems, etc. Research in authorization has long been an important area in computer system security. Specifically, in a computer system, the function of the authorization is to control access to the system. It only allows the authorized users performing authorized operations on the shared data resource of the system. Study on the formal specification of authorization (also called access control) has become a major challenge in the current development of secure computing and IT systems. Jajodia et al. [8] proposed a logic language for expressing authorizations. They used predicates and rules to specify the authorizations; their work mainly emphasizes the representation and evaluation of authorizations. The work of Bertino et al. [2] describes an authorization mechanism based on a logic formalism. It mainly investigates the access control rules and their derivations. In their recent work [3], a formal approach based on C-Datalog language is presented for reasoning about access control models. Li et al. [9] developed a logical language called delegation logic to represent authorization policies, credentials in large-scale, distributed systems. The work emphasizes the delegation depth and a variety of complex delegation principals. Chomicki et al. [5] discussed security policy management using logic program approach. Woo and Lam proposed a formal approach using default logic to represent and evaluate authorizations [10].

This paper is to address high level authorization specification and resolution for inconsistent authorizations by using prioritized logic programs. We first propose a logic language by using logic programs to specify authorization rules, and then solve its conflict by using the concept and techniques of prioritized logic programs.

The paper is organized as follows. Section 2 describes authorization rules, its specification and evaluation. Section 3 investigates authorization conflict issue and proposes a new approach to solve it. We introduce prioritized logic programs for effective and efficient conflict resolution. We discuss the unique answer set of an authorization domain and its proof in section 4 and section 5 concludes the paper.

II. AUTHORIZATION DESCRIPTION

We define that all the authorizations rules forms an authorization domain. The individual rule is specified by a language \mathcal{L}. Language \mathcal{L} includes the following six disjoint sorts for subject, group-subject, access-right, group-access-right, object, group-object together with predicate symbols holds, \in, \subseteq and logic connectives.

In language \mathcal{L}, the fact that a subject S has access right R for object O is represented using a ground atom holds(S, A, O). The fact that a subject S is a member of G is represented by $S \in G$. Similarly, we represent inclusion relationships between subject groups such as $G_1 \subseteq G_2$ or between object groups such as $GO_1 \subseteq GO_2$. In general, we define a literal which represents a fact F to be an atomic formula of \mathcal{L} or its negation, while a ground fact is a fact without variable occurrence. We view $\neg F$ as F. A rule is an expression of the form:

$$F_0 \leftarrow F_1, \cdots, F_m, \neg F_{m+1}, \cdots, \neg F_n,$$ \hspace{1cm} (1)

where each F_i ($0 \leq i \leq n$) is a literal. F_0 is called the head of the rule, while $F_1, \cdots, F_m, \neg F_{m+1}, \cdots, \neg F_n$ are called the body of the rule. Obviously, the body of a rule could be empty. In this case, it represents an authorization fact. A rule is ground if no variable occurs in it.

An extended logic program is a collection of such rules. In a rule, the set $\{F_1, \cdots, F_m\}$ is the literals without weak negation; the set $\{\neg F_{m+1}, \cdots, \neg F_n\}$ is the literals with weak negation.

All the rules required to specify the access control of a system or an organization form an authorization domain. It is formally defined as:

\begin{definition}
An authorization domain is a finite set $D = \{R_i\}$, $i=1,2, \ldots, k$ where R_i is a rule of the form $F_0 \leftarrow F_1, \cdots, F_m, \neg F_{m+1}, \cdots, \neg F_n$ where $m \geq 0$, $n > m$.
\end{definition}

The following is an example of an authorization domain.

\begin{example}
D = \{R_1, R_2, R_3\}, where

$\neg R_1$: holds$(S, R, O) \leftarrow$

R_2: holds$(S_1, W, O) \leftarrow$ holds(S_2, W, O)

R_3: holds$(S_3, R, O) \leftarrow$ holds$(S_3, R, O_1), O \in O_1, \neg$ holds(S_3, R, O)
\end{example}

This domain represents the current authorization information about the system: subject S does not have read right on object O; if subject S_2 has write right on object O, then S_1 can write on O; if S_3 can read O_1, O is a member of O_1 and...
III. PRIORITIZED LOGIC PROGRAM AND EVALUATION

Now, let’s consider the following authorization domain.

Example 2: $D = \{R_1, R_2, R_3, R_4\}$, where

- $R_1: \text{holds}(S_1, R, O_1) \leftarrow$
- $R_2: \neg\text{holds}(S_1, R, O) \leftarrow$
- $R_3: O \in O_1 \leftarrow$
- $R_4: \text{holds}(S_1, R, O) \leftarrow \text{holds}(S_1, R, O_1), O \in O_1$, not $\neg\text{holds}(S_1, R, O)$

This domain states that currently S_1 can read O_1; S_1 cannot read O; O is a member of O_1; if S_1 can read O_1 and O is a member of O_1, it is not specified that S_1 can not read O, then S_1 has the right to read O.

Obviously, rules R_2 and R_4 conflict with each other as their heads are complementary literals, and applying R_2 will defeat R_4 and vice versa. However, we can assign preference ordering among the conflicting rules. If we define $R_2 < R_4$, we expect that rule R_4 is preferred to apply first and then defeat rule R_2 after applying R_1, so that the solution $\text{holds}(S_1, R, O)$ can be derived. On the other hand, if we define $R_4 < R_2$, we expect that rule R_2 is preferred to apply first and then defeat rule R_4 after applying R_2 so that the solution $\neg\text{holds}(S_1, R, O)$ can be derived.

The above example shows an inconsistent authorization domain. In some other situation, the authorization domain is consistent initially, but after certain update, it becomes inconsistent.

For instance, we initially have the following authorization domain:

- $R_1: \text{holds}(S, A, O) \leftarrow$
- $R_2: \text{holds}(S_1, A, O) \leftarrow$
- $R_3: \text{holds}(S_2, A, O) \leftarrow \text{holds}(S_1, A, O)$

It says that currently both S and S_1 can access O; if S_1 can access O then S_2 can also access O. The answer set for this domain is:

- $\{\text{holds}(S, A, O), \text{holds}(S_1, A, O), \neg\text{holds}(S_2, A, O)\}$

Now, the new knowledge $R_4: \neg\text{holds}(S_1, A, O)$ is added to the domain. It conflicts with the existing $R_2: \text{holds}(S_1, A, O)$. We need to define a preference order to solve this conflict.

Suppose we prefer the update, that is we set the newly added R_4 higher preference than the existing conflicting R_2. After the update, the new authorization domain has the following answer set:

- $\{\text{holds}(S, A, O), \neg\text{holds}(S_1, A, O)\}$

We call the logic program with partial ordering \prec on the rules prioritized logic program \mathcal{P} [11]. \mathcal{P} is defined to be a triplet $(\Pi, \mathcal{R}, \prec)$, where Π is an extended logic program, \mathcal{R} is a naming function mapping each rule in Π to a name, and \prec is a strict partial ordering on names. The partial ordering \prec in \mathcal{P} plays an essential role in the evaluation of \mathcal{P}. We also use $\mathcal{P}(\prec)$ to denote the set of \prec-relations of \mathcal{P}. Intuitively \prec represents a preference of applying rules during the evaluation of the program. In particular, if $\mathcal{R}(r) < \mathcal{R}(r')$ holds in \mathcal{P}, rule r' would be preferred to apply over rule r during the evaluation of \mathcal{P}.

The evaluation of a PLP will be based on its ground form. It is to find the answer set of the authorization domain. Given a PLP $\mathcal{P} = (\Pi, \mathcal{R}, \prec)$, we say \mathcal{P} is well formed if there does not exist a rule r' that is an instance of two different rules r_1 and r_2 in Π and $\mathcal{R}(r_1) < \mathcal{R}(r_2) \in \mathcal{P}(\prec)$. In the rest of this paper, we will only consider well formed PLPs in our discussions, and consequently, the evaluation for an arbitrary program $\mathcal{P} = (\Pi, \mathcal{R}, \prec)$ will be based on its ground instantiation $\mathcal{P}' = (\Pi', \mathcal{R}', \prec')$. Therefore, in our context a ground prioritized (or extended) logic program may contain infinite number of rules. In this case, we will assume that this ground program is the ground instantiation of some program that only contains finite number of rules.

Definition 2: Let Π be a ground extended logic program and π a rule with the form $R_0 \leftarrow R_1, \cdots, R_m, R_{m+1}, \cdots, R_n (r$ does not necessarily belong to $\Pi)$. Rule π is defeated by Π if Π has an answer set and for any answer set $\text{Ans}(\Pi)$ of Π, there exists some $R_i \in \text{Ans}(\Pi)$, where $m + 1 \leq i \leq n$.

Let us consider program example 2 once again. If we choose $R_2 < R_3$ and R_3 is defeated by $D = \{R_4\}$, rule R_3 should be ignored during the evaluation of D. We will get the unique answer set $\{\text{holds}(S, R, O_1), O \in O_1, \text{holds}(S_1, R, O)\}$.

To calculate the set of access facts of an authorization domain, we need to evaluate its corresponding extended logic program. That is, to find the answer set of prioritized logic program \mathcal{P}. Now, we present the procedure for finding the answer set. We start from a reduced set or the reduct of \mathcal{P}.

Definition 3: Let $\mathcal{P} = (\Pi, \mathcal{N}, \prec)$ be a prioritized extended logic program. \mathcal{P}^\prec is a redact of \mathcal{P} with respect to \prec if and only if there exists a sequence of sets $\Pi_i (i = 0, 1, \cdots)$ such that:

1. $\Pi_0 = \Pi$;
2. $\Pi_i = \Pi_{i-1} \{r_1, r_2, \cdots\}$ (a) there exists $r \in \Pi_{i-1}$ such that for every $j (j = 1, 2, \cdots)$, $N(r_j) < N(r_j') \in \mathcal{P}(\prec)$ and r_1, \cdots, r_j are defeated by $\Pi_{i-1} \{r_1, r_2, \cdots\}$, and (b) there does not exist a rule $r' \in \Pi_{i-1}$ such that $N(r) < N(r')$ for some $j (j = 1, 2, \cdots)$ and r' is defeated by $\Pi_{i-1} \{r'\}$;
3. $\mathcal{P}^\prec = \bigcap_{i=0}^{\infty} \Pi_i$.

In Definition 3, \mathcal{P}^\prec is a ground extended logic program obtained from Π by eliminating some less preferred rules from Π. In particular, if $\mathcal{R}(r) < \mathcal{R}(r_1), \mathcal{R}(r) < \mathcal{R}(r_2), \cdots$, and $\Pi_{i-1} \{r_1, r_2, \cdots\}$ defeats $\{r_1, r_2, \cdots\}$, then rules r_1, r_2, \cdots will be eliminated from Π_{i-1} if no less preferred rule can be eliminated (i.e. conditions (a) and (b)). This procedure is continued until a fixed point is reached. It is worth to note that the generation of a reduct of a PLP is based on the ground form of its extended logic program part. Furthermore, if $\mathcal{R}(r_1) < \mathcal{R}(r_2)$ holds in a PLP where r_1 or r_2 includes variables, then $\mathcal{R}(r_1) < \mathcal{R}(r_2)$ is actually viewed as the set of \prec-relations $\mathcal{R}(r_1') < \mathcal{R}(r_2')$, where r_1' and r_2' are ground instances of r_1 and r_2 respectively.
Definition 4: Let $\mathcal{P} = (\Pi, \nabla, \prec)$ be a PLP and Gl be the set of all ground literals in the language of \mathcal{P}. For any subset S of Gl, S is an answer set of \mathcal{P}, denoted as $Ans^\mathcal{P}(S)$, iff $S = Ans^\mathcal{P}(\mathcal{P}^S)$ for some reduct \mathcal{P}^S of \mathcal{P}. Given a PLP \mathcal{P}, a ground literal L is entailed from \mathcal{P}, denoted as $\mathcal{P} \models L$, if L belongs to every answer set of \mathcal{P}.

Using Definitions 3 and 4, it is easy to conclude that in example 2, if we assign $R_2 > R_4$, \mathcal{P} has a unique reduct as follows:

$$\mathcal{P}^\prec = \{\text{holds}(S_1, R, O_1), \text{not}\text{holds}(S_1, R, O) \models O \in O_1 \}$$

from which we obtain the following answer set of \mathcal{P}:

$$Ans^\mathcal{P}(\mathcal{P}_1) = \{\text{holds}(S_1, R, O_1), \text{not}\text{holds}(S_1, R, O_1) \}$$

If the preference ordering is $R_2 < R_4$, \mathcal{P} has a unique reduct as follows:

$$\mathcal{P}^\prec = \{\text{holds}(S_1, R, O_1) \models O \in O_1, \text{holds}(S_1, R, O) \models \text{not}\text{holds}(S_1, R, O_1) \}$$

from which we obtain the following answer set of \mathcal{P}:

$$Ans^\mathcal{P}(\mathcal{P}_1) = \{\text{holds}(S_1, R, O_1), O \in O_1, \text{holds}(S_1, R, O) \}$$

Example 3: Now we consider another authorization domain D, its corresponding program \mathcal{P} is:

$$R_1 : \text{holds}(S, W, O_1) \models,$$

$$R_2 : \text{holds}(S, W, O) \models$$

$$\text{not}\text{holds}(S, W, O_1),$$

$$R_3 : \text{holds}(S, W, O_2) \models,$$

$$R_4 : \text{holds}(S, W, O) \models$$

$$\text{not}\text{holds}(S, W, O),$$

$$R_1 > R_2, R_3 > R_4.$$

According to Definition 3, it is easy to see that \mathcal{P} has two reducts:

$$\{\text{holds}(S, W, O_1) \models,$$

$$\text{holds}(S, W, O_2) \models,$$

$$\text{holds}(S, W, O_1) \models \text{not}\text{holds}(S, W, O),$$

and

$$\{\text{holds}(S, W, O_3) \models,$$

$$\text{holds}(S, W, O) \models \text{not}\text{holds}(S, W, O_1),$$

$$\text{holds}(S, W, O_2) \models \}.$$

From Definition 4, it follows that \mathcal{P} has two answer sets:

$$\{\text{holds}(S, W, O_3), \text{holds}(S, W, O_1), \text{holds}(S, W, O_2)\}$$

and

$$\{\text{holds}(S, W, O_3), \text{holds}(S, W, O), \text{holds}(S, W, O_2)\}.$$

IV. UNIQUE ANSWER SET OF AN AUTHORIZATION DOMAIN

Example 4 has two answer sets. If an access request $\text{holds}(S, W, O_1)$ is presented, according to one answer set, the access request is granted; according to the other answer set, the same request will be denied.

Now we investigate the unique answer set of an authorization domain. To investigate this issue, we first extend the concept of local stratification for general logic programs [1] to extended logic programs.

Definition 5: Let Π be an extended logic program and Gl be the set of all ground literals of Π.

1) A local stratification for Π is a function stratum from Gl to the countable ordinals.

2) Given a local stratification stratum, we extend it to ground literals with negation as failure by setting $\text{stratum}(\text{not} F) = \text{stratum}(F) + 1$, where F is a ground literal.

3) A rule $F_0 \leftarrow F_1, \ldots, F_m$, not F_{m+1}, \ldots, not F_n in Π is locally stratified with respect to stratum if $\text{stratum}(F_0) \geq \text{stratum}(F_i)$, where $1 \leq i \leq m$, and $\text{stratum}(F_0) > \text{stratum}(\text{not} F_j)$, where $m + 1 \leq j \leq n$.

4) Π is called locally stratified with respect to stratum if all of its rules are locally stratified.

For an extended logic program which represents certain authorization domain, if such rules exist:

$$a \leftarrow \text{not} b$$

$$b \leftarrow \text{not} a$$

We will have two answer sets $\{a\}$ and $\{b\}$.

The above definition is to ensure that in an extended logic program, there does not exist such rules resulting in multiple answer sets.

For instance, if we assign $\text{stratum}(\text{not} a) = 1$, according to condition 2 of the definition $\text{stratum}(a) = \text{stratum}(\text{not} a) - 1 = 0$, from rule $a \leftarrow \text{not} b$ and the condition 3, $\text{stratum}(\text{not} b) < 0$, so $\text{stratum}(b) < \text{stratum}(\text{not} b) < 0$. From rule $b \leftarrow \text{not} a$ and the condition 3, $\text{stratum}(b) > \text{stratum}(\text{not} a) > 1$. So a domain consists the above rules does not satisfy the definition, it is not locally stratified.

Let Π be a ground extended logic program and r be a rule in Π of the form:

$$F_0 \leftarrow F_1, \ldots, F_m, \text{not} F_{m+1}, \ldots, \text{not} F_n.$$

We use $\text{pos}(r)$ to denote the set of literals in the body of r without negation as failure $\{F_1, \ldots, F_m\}$, and $\text{neg}(r)$ the set of literals in the body of r with negation as failure $\{F_{m+1}, \ldots, F_n\}$. We specify $\text{body}(r)$ to be $\text{pos}(r) \cup \text{neg}(r)$. We also use $\text{head}(r)$ to denote the head of r: $\{F_0\}$. Then we use $\text{Gl}(r)$ to denote $\text{head}(r) \cup \text{body}(r)$. By extending these notations, we use $\text{pos}(\Pi)$, $\text{neg}(\Pi)$, $\text{body}(\Pi)$, $\text{head}(\Pi)$, and $\text{Gl}(\Pi)$ to denote the unions of corresponding components of all rules in Π, e.g. $\text{body}(\Pi) = \bigcup_{r \in \Pi} \text{body}(r)$. If Π is a non-ground program, then notions $\text{pos}(\Pi)$, $\text{neg}(\Pi)$, $\text{body}(\Pi)$, $\text{head}(\Pi)$, and $\text{Gl}(\Pi)$ are defined based on the ground instantiation of Π.

The following definition is to specify under which conditions an extended logic program is locally stratified.

Definition 6: Let Π be an extended logic program and r_p and r_q be two rules in Π. We define a set $\mathcal{D}(r_p)$ of literals with respect to r_p as follows:

$$\mathcal{D}_0 = \{\text{head}(r_p)\};$$

$$\mathcal{D}_i = \mathcal{D}_{i-1} \cup \{\text{head}(r') \mid \text{head}(r') \in \text{pos}(r) \} \text{where} \ r \in \Pi \text{ and } r' \text{ are those rules such that } \text{head}(r') \in \mathcal{D}_{i-1};$$

$$\mathcal{D}(r_p) = \bigcup_{i=1}^{\infty} \mathcal{D}_i.$$
We say that \(r_q \) is defeasible through \(r_p \) in \(\Pi \) if and only if \(\text{neg}(r_q) \cap D(r_p) \neq \emptyset \). \(r_p \) and \(r_q \) are called mutually defeasible in \(\Pi \) if \(r_q \) is defeasible through \(r_p \) and \(r_p \) is defeasible through \(r_q \) in \(\Pi \).

Intuitively, if \(r_q \) is defeasible through \(r_p \) in \(\Pi \), then there exists a sequence of rules \(r_1, r_2, \ldots, r_k \) such that head\((r_p)\) occurs in pos\((r_1)\), head\((r_k)\) occurs in pos\((r_{k+1})\) for all \(i = 1, \ldots \), and for some \(k \), head\((r_k)\) occurs in neg\((r_q)\). Under this condition, it is clear that by triggering rule \(r_p \) in \(\Pi \), it is possible to defeat rule \(r_q \) if rules \(r_1, \ldots, r_k \) are triggered as well. As a special case that \(D(r_p) = \emptyset \), \(r_q \) is defeasible through \(r_p \) iff head\((r_p)\) \(\subseteq \) neg\((r_q)\). The following proposition simply describes the relationship between local stratification and mutual defeasibility.

Proposition 1: Given a ground extended logic program \(\Pi \). If \(\Pi \) is locally stratified, then there are no mutually defeasible pairs of rules in \(\Pi \).

Proposition 2: Let \(\Pi \) be a ground extended logic program. If \(\Pi \) is locally stratified, then \(\Pi \) has a unique answer set.

The above result is easy to prove from the corresponding result for general logic programs shown in [6] based on Gelfond and Lifschitz’s translation from an extended logic program to a general logic program [7]. It is observed that for a PLP \(\mathcal{P} = (\Pi, \mathcal{N}, \prec) \), if \(\Pi \) is locally stratified, then \(\mathcal{P} \) will also have a unique answer set. In other words, \(\Pi \)'s local stratification implies that \(\mathcal{P} \) has a unique answer set.

For instance, if these rules are in an authorization domain:

\[
\begin{align*}
 &a \leftarrow b, \\
 &c \leftarrow a, \\
 &d \leftarrow c, \\
 &e \leftarrow \ldots \text{notd}
\end{align*}
\]

Let the first rule be \(r_p \) and the last one be \(r_q \). Once rule \(r_p \) takes effect, we have \(a \) in the answer set. Suppose all other conditions for rest of the rules taking effect are satisfied, we will have \(c, d \) in the answer set as well. This will prevent \(r_q \) from taking effect. So rule \(r_q \) is defeasible through \(r_p \). Similarly, if rule \(r_p \) is triggered first, then the other rules cannot take effect since the result contradicts with the condition triggering rule \(r_p \). So we say rule \(r_p \) and rule \(r_q \) are mutually defeasible. The domain has two answer sets: \{a, c, d\} and \{e\}.

Theorem 1: Every prioritized logic program has a \(\prec \)-partition.

Theorem 2: (Unique Answer Set Theorem) Let \(\mathcal{P} = (\Pi, \mathcal{N}, \prec) \) be a ground PLP and \(\{\Pi_1, \ldots, \Pi_k\} \) be a \(\prec \)-partition of \(\Pi \). \(\mathcal{P} \) has a unique reduct if there does not exist two rules \(r_p \) and \(r_q \) in \(\Pi_i \) and \(\Pi_j \) \((i, j > 1)\) respectively such that \(r_p \) and \(r_q \) are mutually defeasible in \(\Pi \). \(\mathcal{P} \) has a unique answer set if \(\mathcal{P} \) has a unique locally stratified reduct.

Proof: According to Proposition 3, it is sufficient to only prove the first part of this theorem: \(\mathcal{P} \) has a unique reduct if there does not exist two rules \(r_p \) and \(r_q \) in \(\Pi_i \) and \(\Pi_j \) \((1 < i, j)\) respectively such that \(r_p \) and \(r_q \) are mutually defeasible in \(\Pi \). \(\mathcal{P} \) has a unique locally stratified reduct.

Definite 2: \(\mathcal{P}^{(1)} \) and \(\mathcal{P}^{(2)} \) are generated from two reduce chains \(\{\Pi_0, \Pi_1, \ldots\} \) and \(\{\Pi_0, \Pi_1, \ldots\} \) respectively.

Without loss of generality, suppose that for all \(0 \leq i < k \), \(\Pi_1 = \Pi_2 \), and

\[
\begin{align*}
 &\Pi_1^{(1)} = \Pi_{k-1}^{(1)} - \{r_1, \ldots, r_p, \ldots\}, \\
 &\Pi_2^{(2)} = \Pi_{k-1}^{(2)} - \{r_1, \ldots, r_q, \ldots\},
\end{align*}
\]

where we set \(\Pi_{k-1}^{(1)} = \Pi_{k-1}^{(2)} \) and the only difference between \(\Pi_k^{(1)} \) and \(\Pi_k^{(2)} \) is due to rules \(r_p \) and \(r_q \). Let \(r_p \) and \(r_q \) have the following forms:

\[
\begin{align*}
 &r_p : L_p \leftarrow \ldots, \text{not} L_p', \ldots, \\
 &r_q : L_q \leftarrow \ldots, \text{not} L_q', \ldots
\end{align*}
\]

Let \(r_p \) hold \(L_p \) and \(r_q \) does not and \(L_q \) does not defeat rule \(r_q \) (otherwise \(\Pi_1^{(2)} = \Pi_1^{(1)} \)), it is observed that rule \(r_q \) triggers rule \(r_p \) in \(\Pi_k^{(1)} \) that defeats \(r_p \) and rule \(r_p \) triggers rule \(r_q \) in \(\Pi_k^{(2)} \) that defeats \(r_q \). This follows that \(r_p \) and \(r_q \) are mutually defeasible in \(\Pi \).

Example 4: An authorization domain \(D = \{R_1, R_2, R_3\} \), where

\[
\begin{align*}
 &R_1: \text{holds}(S, A, O) \leftarrow R_2: \text{holds}(S_1, A, O) \leftarrow \text{holds}(S, A, O) \\
 &R_3: \text{holds}(S_2, A, O) \leftarrow \text{not-holds}(S_1, A, O)
\end{align*}
\]

This domain does not have a unique answer set since \(R_1 \) and \(R_3 \) are mutually defeasible. It has two answer sets: \{\text{holds}(S, A, O), \text{holds}(S_1, A, O)\} and \{\text{holds}(S_2, A, O)\}.

Example 5: Here is another domain \(D = \{R_1, R_2, R_3, R_4, R_5\} \), where

\[
\begin{align*}
 &R_1: \text{holds}(S, A, O) \leftarrow R_2: \text{holds}(S_1, A, O) \leftarrow R_3: \text{holds}(S_2, A, O) \leftarrow \text{not-holds}(S_3, A, O) \\
 &R_4: \text{holds}(S_3, A, O) \leftarrow \text{holds}(S, A, O) \\
 &R_5: \text{holds}(S_4, A, O) \leftarrow \text{holds}(S_1, A, O), \text{not-holds}(S_3, A, O)
\end{align*}
\]

This domain does not contain any pair of defeasible rules. It is locally stratified. It has a unique answer set: \{\text{holds}(S, A, O), \text{holds}(S_1, A, O), \text{holds}(S_2, A, O), \text{holds}(S_4, A, O), \text{holds}(S_5, A, O)\}.

V. Conclusion

In this paper, we proposed a new approach to solve conflicts in authorizations. So far, certain research has been done using logic in authorizations as mention in introduction. These works either focus on authorization representation, or delegation. Little has been done in conflict resolution of authorization.
In our work, we employed a prioritized logic program to resolve authorization conflicts in an authorization domain specified by a logic language. By assigning each rule a name representing its preference ordering, using a fixed point semantics to delete those less preferred rules (the rules will not take effect under current state), then using answer set theory to evaluate the authorization domain to get the preferred authorizations. We also investigated the uniqueness of the answer set of an authorization domain and discussed the conditions under which the domain has a unique answer set. In our future work, we will consider the implementation issue with authorization evaluation and dynamic policy update. A related work using logic programs for conflict resolution in reasoning has been implemented in (removed for blind review) It is our future work to use logic programs(stable model semantics) to implement the approach for authorization conflict resolution presented in this paper.

REFERENCES

