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Application of the Central-Difference with Half -
Sweep Gauss-Seldel Method for Solving First
Order Linear Fredholm Integro-Differential
Equations
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Abstract—The objective of this paper is to anadyse the
application of the Half-Sweep Gauss-Seidel (HSGS) method by using
the Half-sweep approximation equation based on central difference
(CD) and repeated trapezoidal (RT) formulas to solve linear fredholm
integro-differential equations of first order. The formulation and
implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half-
Sweep Gauss-Seidel (HSGS) methods are a so presented. The HSGS
method has been shown to rapid compared to the FSGS methods.
Some numerical tests were illustrated to show that the HSGS method
is superior to the FSGS method.

Keywords—Integro-differential  equations, Linear fredholm
equations, Finite difference, Quadrature formulas, Half-Sweep
iteration.

I. INTRODUCTION

NTEGRO-DIFFERENTIAL equations (IDEs) arise from

many branches of science, for example in control theory and
financial mathematics [1]. Especially in physics, it arises
naturally such as scattering theory, colloidal dispersions, heat
transfer in the presence memory effects, quark dynamic [2],
etc. IDE is an equation that the unknown function appears
under the sign of integration and it aso contains the
derivatives of the unknown function. Commonly, it can be
classified into Fredholm equations or Volterra equations. The
upper bound of the region for integral part of Volterra typeis
variable, while it is a fixed number for that of Fredholm type.
However, in this paper we focus on Fredholm integro-
differential. Generally, first-order linear Fredholm integro-
differential equations can be defined as follows

y'(¥) = p(x)y(x) + f(X)+_[:K(X,t)Y(t) dt, asxs<b (1)

y(@=y,

where the functions , and the kernel are known and is the
solution to be determined. In the engineering field, numerical
methods for solution of linear Fredholm integro-differential
equations (LFIDEs) have been studied by many authors such
as Lagrange interpolation method [3], Tau method [4],
guadrature-difference method [5], variational method [6],
collocation method [7], homotopy perturbation method [8],
Euler-Chebyshev method [9] and GMRES method [10].
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LFIDEs are usualy difficult to solve anayticaly so
numerical approaches are practiced to obtain an approximation
solution for the problem (1). To solve a LFIDE eguation
numerically, discretization of differential and integral parts to
the solution of system of linear algebraic equationsisthe basic
concept used by researchers to solve LFIDE problems. By
considering numerical techniques, there are many schemes that
can be used to discretize problem (1) independently for linear
differential and integral terms. Many researchers have
implemented discretization schemes for linear differential term
such as finite difference scheme [11]-[12]), Taylor polynomial
scheme [13], Chebyshev polynomial method [14], Runge-
Kutta scheme [15] and Euler implicit schemes [16] whilst to
discretize linear integral term numerically, many discretization
schemes can be used for approximation such as quadrature
[17]-[20], projection method [21]-[22]) and least squares [23].
The concept of Half-sweep iterative method was introduced
by[24] by the employ of Explicit Decoupled Group (EDG) to
solve two-dimensional Poisson equations. Then this concept
has been discussed in [25]-[30]. This concept is essential to
reduce the computational complexities during the iterative
process, whereas the implementation of the half-sweep
iterations will only consider nearly half of all node pointsin a
solution domain. In this paper, we carried out the application
of the half-sweep iteration technique with Gauss-Seidel (GS)
iterative methods by using approximation equation based on
finite difference and quadrature schemes for solving problem
(1). The standard GS iterative method also called as the Full-
Sweep Gauss-Seidel iterative method was implemented with
half-sweep iterations process whereas it can be indicated as
Half-Sweep Gauss-Seidel (HSGS). The organization of the
paper is as follows. In section 2, the formulation of the finite
difference and quadrature approximation equations for full-
and half-sweep cases will be elaborated. In section 3,
formulation of the FSGS and HSGS methods will be
demonstrated. In section 4, some numerical results will be
illustrated to emphasize effectiveness of the methods.
Conclusionisin section 5.

Il.FORMULATION OF HALF-SWEEP APPROXIMATION EQUATION

Based on Fig. 1, the full- and half-sweep iterative methods
will compute approximate values onto only solid node points
until the convergence criterion is reached. It seems that the
implementation of the half-sweep iterative method just
involves by nearly one-half of whole inner points as shown in
Figure 1(b) compared with the full-sweep iterative method.
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Then the other approximation solutions for the ramg B.Formulation of Half-Sweep Quadrature Method
points are calculated by using direct methods3gl, For the integral term, RT discretization schemeetasn
h quadrature method was used to construct an appatigim
> equation. In general quadrature formula can benddfias
01 2 3 4 n4 n3n2nl n follows ]
b
a
@) [ voae=d" Ay +enty) (4)
2h ) 1=0
—>
*—O0—08 00— - —0—0—0e 00 where tj (j=01...,n) are the abscissas of the partition
0 1 2 3 4 n-4 n-3n2nl n

points of the integration intervalap] or quadrature
(interpolation)  nodes, Aj(j:O;L,...,n)are numerical

(b)

Fig. 1 (a) and (b) show distribution of uniform mogoints for the
full and half-sweep cases respectively.

coefficients that do not depend on the functig(t) and
€n(y) is the truncation error of Eq. (2). Based on RTeru

) L . numerical coefficientsA; are satisfied following relation
A.Formulation of Half-Sweep Finite Difference Schemes

As mentioned in section 1, CD scheme based onefinit lph, j=0n
difference method was used to form an approximation Aj =12 ) ®)
equation for differential term. In this paper Chheme was ph,  otherwise
used to discretize the first order LFIDE. In gemefiest order . .
derivative of second order error central differefaenula can where the constant step sibes defined
be derived from the Taylor series expansion asvil h= b-a ©6)
for i=12n-1, n
e y(x- 1)_ Y(X'—l) 5 n is the number of subintervals in the interva, [b].
y'(x) == on : +O(h ) (2)  Meanwnhile, the value g, which corresponds to 1 and 2,
for i=n, represents the full- and half-sweep respectively.
. 3y(x ) - 4y(x )+ y(X_,) Based on Egs. (3), (4) and (5), by substitute Exo (1), a
y (Xi): ' 2'hl 25+ O(hz) ®3) system of linear algebraic equations obtained for

approximation valuesy(x) at the nodeg,X,...,X,. The

b-a . . . following linear system generated either by thé- fat half-
whereh =—— is size interval between nodes.

n sweep approximation equation can be easily shown as
while O(h?) is truncations error which, is will not be My = f 7
considered in this paper. The size of the trunoagoor is -~ -
mostly under our control because we can choosmésh size. h
In order to obtain the finite grid work network for WNere

formulation of the full- and half-sweep finite dflence Ay ey o
approximation equations over the problem as statdeh (1), ]‘7
further discussion will be restricted onto CD sckewhich is o
as follows Yp (Zh/'\)K PO +1)y0 +2hf,

) vxs) Yo (2nAK 2.0 )y + 20t

Y(Xi)_z—ph (3 y=| and f = :
) yn—p ) (ZhA)Kn—p,O Yo + 2h1:n—p
and Vi (2nAK 1 0 )yo + 2N,
3y(x- )—4 Xi_p |+ Y(Xi_op)
Y'(Xi ) = I y( l p) 2 (4) The value op, which corresponds to 1 and 2, represents the

2ph full- and half-sweep cases respectively.

where the value ofp, which corresponds to 1 and 2 ,
represents the full- and half -sweep respectively.
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Ill.  FORMULATION OF THE FULL- AND HALF-SWEEPGAUSS
SEIDEL METHODS

In this paper, FSGS and HSGS iterative methods lvll
applied to solve linear system generated from
discretization of the problem (1) as shown in Ef). (Let
matrix M be articulated into

M=D-L-U

where D, L and U are diagonal, strictly lower triangular

and strictly upper triangular matrices respectiv@ifius, the
general scheme for FSGS and HSGS iterative mettadde
written as

¥ =(p- L)‘l[u yt fj . ©)

The iterative methods attempt to find a solutionthe
system of linear equations by repeatedly solving lihear
system using approximations to the vegtorlterations for

FSGS and HSGS methods continue until the soluiomithin
a predetermined acceptable bound on the error.géneral
algorithms for FSGS and HSGS iterative methods dlves
problem (1) would be generally described in Aldarit1.

Algorithm: FSGS and HSGS methods

i) Initializing all the parameters. Set k = 0.
i) i=p,2p,---,n=2p,n=p,n
Calculate

e _ 1 Sy )y Sy
yld Vo fi-h ZMi,j y;" 7 =h ZMi,j Yi
i

=p2p, j=i+p.i+2p

iii) Convergence test

iv) If the error of tolerance‘yi('“l) —yi(k)‘ <£=10° s

satisfied, the value option at that time }'ékﬂ) and the

algorithm end.
v) Else, sek = k+1 and go to step (ii).

IV. ILLUSTRATIVE EXAMPLES

In this section, 3 numerical examples are illuslab show
the accuracy and effectiveness of the proposedadstand all
of them were performed by using C language. Thréeria
will be considered in comparison for FSGS and HSG& as
number of iterations, execution time and maximurachite
error.

Example 131]

1 1
y'(x):l——x+.|. xty(t)dt 0<x<1
3 0
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with the condition

y(0)=0

thend exact solution of the problem is

y(X) = X.

o) Example Z31]

1
y'(X) = xe* +e* —x+.|.0y(t)dt 0<x<1

with the condition
y(©)=0

and exact solution of the problem is
y(X) = xe*.

Example 332]

1
y'(X) :sinhx+£(1—e‘l)x—l.|. xty(t)dt 0<x<1
8 8Jo

with the condition

y(0 =1
and exact solution of the problem is
y(X) =coshx.
Throughout the experiments, the convergence test

considered the tolerance error 8=1072°. The experiments
were carried out in different mesh sizes such asl80, 240,
480 and 960. Results of numerical simulations whigtre
obtained from implementations of the FSGS and HSGS
iterative methods for Examples 1, 2 and 3 have beeorded

in Tables 1, 2 and 3 respectively.

V.CONCLUSION

In this paper, the HSGS iterative method was enguayp
solve LFIDE for first-order. Based on numerical uks
observed in Tables 1, 2 and 3, it manifestly shtiveg the
application of the half-sweep iterative conceptniigantly
reduces computational time (refer table 4) with thierable
precision. In the other hand, the number of iterati also
reduced extensively corresponding to the mesh .sizesll
purpose, HSGS iterative method is faster for threpdational
works compared to FSGS iterative method. This i tuthe
computational complexity of the HSGS is reduced
approximately 50% compared to FSGS method. In dutur
works this concept can also can be used for higlerolDEs
problems.
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TABLE |
COMPARISON OF A NUMBER OF ITERATIONSEXECUTION TIME (SECONDY AND
MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS F& EXAMPLE 1

Number of iteration

Mesh size
Methods 60 120 240 480 960

FSGS+CD+RT 3317¢ 10798¢  37598: 139434 548781«
HSGS+CD+RT 1095 33174 10798¢ 37598: 1394341

Execution time (second:

Mesh size
Methods 60 120 240 480 960

FSGS+CD+RT 512.36 17122.4460347.03 143653.12 5434556.95
HSGS+CD+RT  47.8i 563.5¢ 19656.3. 61202.9¢ 153655.8

Maximum Absolute Error

Mesh size
60 120 240 480 960

Methods

FSGS+CD+RT 2.623E-5 5.853E-6 3.506E-6 1.359E-7 9.858E-7
HSGS+CD+RT 1.057E-4 2.623E-5 5.853E-6 3.506E-6 1.359E-7

TABLE Il
COMPARISON OF A NUMBER OF ITERATIONSEXECUTION TIME (SECONDY AND
MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS F& EXAMPLE 2

Number of iteration

Mesh siz¢
Methods 60 12C 24C 48C 96C

FSGS+CD+RT 43268 137637 459828 1653228 6136092
HSGS+CD+RT 14595 43268 137637 459828 1653228

Execution time (seconds)

Mesh sizt
60 12C 24C 48C 96C

Methods

FSGS+CD+RT 421.65 5324.21 55324.20 155159.78 1073214.21
HSGS+CD+RT 20.66 795.54  16845.02 64324.17  579548.36

Maximum Absolute Error

Mesh size
Methods 60 12C 24C 48C 96C

FSGS+CD+RT 2.9883F-4 6.2354t-4 2.3785F-5 4.3312F5 1.2032E-6
HSGS+CD+RT 1.2228F-3 2.9883F-4 6.2354F-4 2.3785E-5 4.3312E5

TABLE Ill
COMPARISON OF A NUMBER OF ITERATIONSEXECUTION TIME (SECONDY AND
MAXIMUM ABSOLUTE ERROR FOR THE ITERATIVE METHODS FQ EXAMPLE 2
Number of iteration

Mesh size
Methods 60 120 240 480 960
FSGS+CD+RT 2776€  9273¢  33189¢  122954( 598864
HSGS+CD+RT 8737 2776€  9273¢  33189¢ 122954
Execution time (seconds
Mesh size
Methods 60 120 240 280 960

FSGS+CD+RT 256.65 4651.23 48898.78 145694.01 1002365.64
HSGS+CD+RT 11.8¢ 257.8¢ 4856.3! 49584.1. 149653.4
Maximum Absolute Error
Mesh size
Methods 60 120 240 480 960
FSGS+CD+RT 2.572E-5 3.265E-6 4.397E-6 6.320E-7 1.254E-8
HSGS+CD+RT 1.335E-4 2572E-5 3.265E-6 4.397E-6 6.320E-7
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TABLE IV
PERCENTAGES OF REDUCTION FOR EXECUTION TIME FORSGSITERATIVE
METHODS COMPARED WITHFSGSMETHOD

HSGS+CD+RT
Methods
Execution time
Example 1 57.39%-97.17%
Example 2 45.99%-95.10%
Example 3 65.96%-95.37%
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