IMM based Kalman Filter for Channel Estimation in MB OFDM Systems

C.Ramesh and V.Vaidehi

Abstract—Ultra-wideband (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix whereas in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.

Keywords—Channel estimation, Kalman filter, UWB, Channel model, AR model

I. INTRODUCTION

Ultra wideband (UWB) is a fast emerging technology with uniquely attractive features inviting major advances in wireless communication, networking, radar, imaging and positioning system [1][3]. OFDM has recently been applied in wireless communication due to its high data rate transmission capability with high bandwidth efficiency and robustness to multi-path delay. UWB OFDM called Multiband OFDM (MB OFDM), is a communication technique for physical layer in the IEEE 802.15.3a standard which covers wideband communication in Wireless Personal Area Networks (WPANs) [2]. UWB signals with short duration of pulses provide unique advantage in short range applications which includes easy penetration through obstacles, high precision rangin and low processing power.

The channel model for UWB communication is entirely different from narrowband wireless communication and many channel models have been proposed in literatures. In practice OFDM systems operate over a dispersive channel and therefore a guard interval usually inserted in the transmitted sequence.

The guard interval may be of Cyclic Prefix (CP) of the data symbol or zeros and its length is equal to the maximum delay spread of the channel. A combination of IFFT and CP at the transmitter with FFT at the receiver converts frequency selective channel into parallel flat faded subchannels [9,10]. A pilot based channel estimation technique using Kalman filter for OFDM communication has also been proposed [13]. However in this method, the state transition matrix in the Kalman filter is assumed as an identity matrix. Interacting Multiple Model (IMM) based Kalman algorithm is proposed for RADAR signal tracking. Evolution of fading channel parameters in time domain can be described by an Auto Regressive (AR) process [14]. Using AR model, the parameters in the state transition matrix is derived. These parameters are computed from Jakes fading channel model using Yule walker equations [15].

The rest of the paper is organized as follows; Section II describes the UWB channel and System model for IEEE 802.15.3a WPANs with detailed specifications. In section III, a novel channel estimation scheme using Kalman filter is proposed. Section IV presents the extensive simulation results under various channel conditions to validate our method.

II. UWB CHANNEL AND SYSTEM MODEL

The most famous multipath UWB indoor channel models are tap-delay line Rayleigh fading model, Saleh-Valenzuela model [5] and Δ-K model. Recently Intel proposed a modified S-V model for UWB communication [7]. The arrival of multipath components are modeled by using statistically random process, it is based on Poisson distribution. The multipath arrival of UWB signals are grouped into two categories, cluster arrival and ray arrival within a cluster the impulse response of UWB channel can be written as[6].

\[
h(t,\tau) = \sum_{l=0}^{L-1} \sum_{k=0}^{K-1} a_{k,l} \delta(t-T_l-\tau_{k,l})
\]

Where \(a_{k,l}\) is the multipath gain coefficient of \(k^{th}\) ray related to \(l^{th}\) cluster. \(T_l\) is the delay or arrival time of the first path of \(l^{th}\) cluster. \(\tau_{k,l}\) is the delay of \(k^{th}\) path within the \(l^{th}\) cluster relative to \(T_l\). \(X\) is the lognormal shadowing term. The ray arrival and cluster arrival distribution time are given by

\[
p(T_l/T_{l-1}) = \lambda \exp[-\lambda(T_l-T_{l-1})] \\
p(\tau_{k,l}/\tau_{k,l-1}) = \lambda \exp[-\lambda(\tau_{k,l}-\tau_{k,l-1})]
\]

Manuscript received on March 21, 2006.

C Ramesh is Research Scholar, Department of Electronics, Madras Institute of Technology Campus, Anna University, Chennai, TN, India. (Corresponding author Ph: 91-44-43575785. e-mail: crameshmail@yahoo.com)

V Vaidehi is Professor, Department of Electronics Engineering, Madras Institute of technology campus, Anna University, Chennai, TN, India. (email: vaidehivijay@yahoo.co.in)
The channel coefficients are the product of large scale and small scale fading components which is given by

\[\alpha_{k,l} = \beta_{k,l} \]

\(\beta_{k,l} \) is the amplitude of the UWB signal and it is based on lognormal distribution. This is given as

\[20 \log_{10}(\beta_{k,l}) \sim \text{Normal}(\mu_{\beta_{k,l}}, \sigma_{\beta_{k,l}}^2) \]

Where \(\sigma_{\beta_{k,l}} \) is the standard deviation of cluster lognormal fading term. \(\sigma_{\beta_{k,l}} \) is the standard deviation of ray lognormal fading term. The behavior of averaged power delay profile is

\[E[|\beta_{k,l}|^2] = \Omega e^{-\frac{\gamma}{\Gamma}} \]

Where \(\Gamma \) and \(\gamma \) are cluster and ray decay factor. This reflects the exponential decay of each ray as well as decay of the total cluster power with respect to delay. \(X \) is the shadowing term and it is characterized by following

\[20 \log_{10}(X) \sim \text{Normal}(0, \sigma_X^2) \]

\(\sigma_X \) is the standard deviation of lognormal shadowing term. In UWB OFDM systems, the entire UWB spectrum is divided in 14 subbands, each with a bandwidth of 528 MHz. The multipath resolution of UWB OFDM channel model is different from other UWB channel models. The channel parameters are generated as per UWB channel model, passed through a low pass filter and a re-sampling circuit with respect to UWB OFDM symbol rate [4].

The OFDM transmission model [8] considered in this paper is shown in Fig.1. OFDM transmitter converts input data into N parallel data sequences and they are modulated by the Inverse Fast Fourier Transform (IFFT) in base band and then converted into serial data. Guard Interval (GI) in which zero is inserted between symbols to avoid InterSymbol Interference (ISI) caused by multipath fading. The complex base band signal is written as

\[r_{OFDM}(t) = \Re \left\{ \sum_{k=0}^{N-1} \alpha_{k,T_{sym}} e^{j2\pi ft} \right\} \]

Where \(\Re(.) \) represents the real part of the complex variable. \(r_{OFDM}(t) \) is the complex base band signal of the kth OFDM symbol and it is nonzero over the interval from 0 to \(T_{sym} \). \(N \) is the number of OFDM symbols. \(T_{sym} \) is the symbol interval and \(f_c \) is the center frequency for the kth band. All of the OFDM symbols \(r_{OFDM}(t) \) can be constructed using an IFFT with certain set of coefficients \(x_f(i) \), where the coefficients are defined as either data, pilot or training symbols.

\[s_{OFDM}(t) = \sum_{i=-\infty}^{\infty} \sum_{n=-N_{ST}}^{N_{ST}} x_f(i) p(t-iT_n)e^{j2\pi n\Delta f(t-T_{CP})} \]

Where \(\Delta f \) and \(N_{ST} \) are defined as the subcarrier frequency spacing and the total number of subcarrier. \(T_{CP} \) and \(T_{GI} \) are the cyclic prefix duration and guard interval duration which are used in OFDM to mitigate the effects of multipath. \(p_c(t) \) is a rectangular symbol pulse waveform defined as

\[p_c(t) = \begin{cases} 1, & 0 \leq t \leq T_{FF} + T_{CP} \\ 0, & T_{FF} + T_{CP} \leq t \leq T_{FF} + T_{CP} + T_{GI} \end{cases} \]

The received signal of one user through UWB channel is written as

\[y(t) = \int_{-\infty}^{\infty} s_{OFDM}(t-\tau) \otimes h(\tau;t) d\tau + n(t) \]

\[y(t) = \sum_{i=-\infty}^{\infty} \sum_{n=-N_{ST}}^{N_{ST}} z_{nf}(i) x_f(i) p(t-iT_n)e^{j2\pi n\Delta f(t-T_{CP})} + n(t) \]

where \(z_{nf}(t) \) is the received complex envelop at the n\(^{th}\) subcarrier.

![Fig.1 Block diagram of system model](https://scholar.waset.org/Publication/13295)
III. INTERACTION MULTIPLE MODEL (IMM) ALGORITHM FOR CHANNEL ESTIMATION AND TRACKING

IMM based Kalman filtering algorithm is proposed to estimate and track the time varying frequency selective fading channel. A simple IMM based filter for channel tracking consists of two models namely Static Model Filter (SMF) and Dynamic Model Filter (DMF). A SMF provides a better estimate of the channel parameters when the receiver is static and a DMF gives a better estimate of the channel when the receiver is in moving state. The estimated channel parameters are combined based on model probabilities. The model probabilities are updated for each time based on residuals. The state transition matrix in the SMF is assumed as an Identity Matrix. For DMF, the state transition matrix and Noise covariance matrix parameters are derived using Yule walker equations from Jakes fading channel model. The block diagram of proposed IMM based channel estimation filter is shown in Fig.2. The channel parameters are considered as state vector and received signal parameter is considered as measurement vector. The system equation is modeled as follows:

\[
X(t+1) = \Phi X(t) + n(t)
\]
(12)

Where \(X(t) \) is the state vector and \(\Phi \) is the state transition matrix and it is different for static and dynamic model filter. \(n(t) \) is the zero mean, white Gaussian noise with covariance \(Q \). The measurement vector is modeled as

\[
Z(t) = B(t) X(t) + u(t)
\]
(13)

Where \(B(t) \) is the measurement matrix of size \(N \times N \) which is the estimate of transmitted signal vector and \(u(t) \) is the zero mean white Gaussian measurement noise with covariance \(R_c \).

The steps involved in the Interacting Multiple Model algorithm are given below:

Step 1: Interaction

Let \(X_i \) is the filtered state vector of the \(i^{th} \) filter and \(P_i \) be the corresponding filtered error variance. Then \(X_{Oi} \) is the mixed state vector at the input of each filter is given by

\[
X_{Oi} = \sum_{j=S,D} X_i^{j} \mu^j_i\;; \text{where } i = S,D
\]
(14)

\[
X_{S_t-1}^S \quad X_{D_t-1}^D
\]

\[
X_{t-1}^{OS} \quad X_{t-1}^{OD}
\]

\[
X_{t}^S \quad X_{t}^D
\]

\[
X_{t}^{Out}
\]

\[
M_{S_t-1}^S \quad M_{D_t-1}^D
\]

\[
P_t^S \quad P_t^D
\]

\[
M_t^S \quad M_t^D
\]

\[
X_{out}
\]

Fig. 2 Interacting Multiple Model Algorithm with two filters
and the model probabilities μ^i are given by
\[
\mu^i = \frac{1}{M^i} ; \text{ where } j,i=V,A
\]
and $C^i = \sum_{j=A}^{V} b^i M^j ; \text{ where } i=V,A$
where M^i are the model weights that are calculated using normalized innovations. b^i are the static model switching (transition) probabilities for the Markov chain according to which the system model switches from static model filter to dynamic model. Initially these values are assumed constant.

C^D, C^S are corresponds to normalized constant for SMF and DMF. Subscript ‘D’ indicates normalized constant for SMF and DMF. Subscript ‘D’ indicates static model. The state vector $X_S(t)$ of the static model represents the channel parameters related to static receiver. The state vector $X_D(t)$ of the Dynamic model represents the channel parameters related to dynamic receiver. The mixed error covariance during interaction is given by
\[
P^i = \sum_{j=S,D} \mu^j \{P + [X - X^j] [X - X^j]^T \} ; \text{ where } i=S,D
\]
(15)
where $P^i=P(t-1/t-1)$ is the filtered error covariance matrix defined by $E[[X(t)-X(t-1)] [X(t)-X(t-1)]^T]$. Step 2: Prediction

Prediction process for each of the filter is obtained using standard Kalman filter. The measurement $Z(t)$ is given to all filters and the normalized innovations are computed for each filter. The Kalman filtering equations for predicting the state vector is given by
\[
X^i(t+1) = \Phi^i X^i(t) ; \text{ for } i=S,D
\]
(16)
The filtered state vector $X^i(t)$ is equal to the mixed state vector X^O_i obtained in the interaction step and hence
\[
X^i(t-1) = \Phi^i X^O_i
\]
(17)
The error covariance prediction is given by
\[
P^i(t+1) = \Phi^i P^i(t) (\Phi^i)^T + Q^i
\]
(18)
The filtered error covariance matrix $P^i(t+1)$ is equal to the mixed error covariance matrix P^O_i obtained from the interaction step and hence
\[
P^i(t+1) = \Phi^i P^O_i (\Phi^i)^T + Q^i
\]
(19)
The value of the state transition matrix for the static model Φ^S is assumed as a Identity matrix. The State transition matrix for the velocity model is derived from Eq.21 using Yule Walker equations. The noise covariance matrix is expressed as $Q(t+1)=\text{diag}(\sigma^2_{\text{h}}(t+1))$. The power delay profile of the channel paths $\sigma^2_{\text{h}}(t+1)=\{\sigma^2_{\text{h},1}(t+1), \ldots, \sigma^2_{\text{h},N}(t+1)\}$. The observation vector is considered as a received signal vector which is common for both Kalman filters. The difference between measured and predicted quantities is defined as an innovation, it is given by
\[
e^i(t) = y(t) - B^i(t) X^i(t) ; i=S,D
\]
(20)
The residual error covariance matrix is defined by equation
\[
S^i(t) = B^i(t) P^i(t) (B^i(t))^T + R
\]
(21)
The Kalman gain is given by
\[
K^i(t) = P^i(t) (B^i(t))^T [S^i(t)] ; i=S,D
\]
(22)
Step 3: Model probability update

Let d^i be the residuals for model i, then model probability weight is computed as
\[
M^i = \frac{1}{N_c} d^i C ; \text{ where } i=S,D
\]
(23)
where N_c is the normalization constant to ensure that $\sum_{i=S,D} M^i = 1$ and $N_c = \sum_{i=S,D} d^i C^i$

Step 4: Filtering
The states predicted by static and dynamic model filters are updated using Kalman filter equations. The filter error covariance is given by
\[
P^i(t) = [I - K^i(t) B^i(t)] P^i(t+1)
\]
(24)
The filtered state vector is given by
\[
X^i(t) = X^i(t+1) + K^i(t) e^i(t)
\]
(25)
Step 5: Output generation
The resultant filter estimate is compared as a weighted sum of individual filter estimates
\[
X_{\text{out}} = \sum_{i=S,D} M^i X^i
\]
(26)
The working of the IMM algorithm is as follows. At time t, during interaction step, before the measurement $y(t)$ is received, mixed state vector $X^O(t)$ and mixed error covariance $P^O(t)$ are obtained using the previous filtered estimate $X(t-1/t-1)$ and the filter error covariance $P(t-1/t-1)$. During time update stage, using mixed state vector and mixed error covariance, the best estimate of states $X(t/t-1)$ and $P(t/t-1)$ are obtained. Once the prediction is completed, the innovation and the Kalman gain $K(t)$ are evaluated. As soon as the measurements are available, the residuals and model probability weights M^i are determined. During the filtering phase, the innovations are weighted by their respective gains to correct the predicted state estimates and to get filtered state estimate and filtered covariance. The resultant filter estimate X_{out} is computed as a weighted sum of individual filter estimates. The algorithm awaits the next measurement at time $(t+1)$ and the above process is repeated for each subsequent measurements.

IV. RESULTS AND DISCUSSIONS

In this section, performance of the proposed blind adaptive channel estimation technique is analyzed using MB OFDM channel model. The parameters for the different channel model are given in Table.1. The additive noise used in the simulation is based on Gaussian distribution with a variance σ^2. We have also considered Jakes fading model with a normalized Doppler frequency of 0.0001. The parameters of the OFDM are as per IEEE 802.15.3a standard with a bandwidth of 528 MHz that is divided into 128 subcarriers and QPSK modulation is considered. To make subcarriers orthogonal in the presence of multipath, guard interval length of 32 subcarrier is added. The MSE analysis of the IMM based method at 10dB SNR level is shown in Fig.3.

The value for different SNR levels is shown in Fig.4 and it gives better performance than RLS based estimation. At 20dB SNR the IMM based method gives 15dB improvement over RLS based estimation. The BER analysis for two channel models using the proposed method is given in Fig.5.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF UWB CHANNEL MODEL</td>
</tr>
<tr>
<td>Channel Model</td>
</tr>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>Mean excess delay (msec)</td>
</tr>
<tr>
<td>RMS delay (msec)</td>
</tr>
<tr>
<td>NP (85% energy)</td>
</tr>
<tr>
<td>NP (10 dB peak)</td>
</tr>
</tbody>
</table>

Fig. 3 MSE analysis

Fig. 4 MSE comparison of RLS and Kalman Estimator

Fig. 5 BER Analysis
V. CONCLUSION

We have considered the problem of Blind channel estimation in MB OFDM systems. IMM based Kalman filter model is proposed to estimate channel parameters for frequency selective and time varying channel. The state transition matrix in the Kalman filter is derived based on Yule Walker equations. The proposed method gives better performance than blind RLS algorithm in terms of BER and MSE.

REFERENCES