Comments on He et al.’s robust biometric-based user authentication scheme for WSNs

Eun-Jun Yoon, Member, IEEE, and Kee-Young Yoo, Member, IEEE

Abstract—In order to guarantee secure communication for wireless sensor networks (WSNs), many user authentication schemes have successfully drawn researchers’ attention and been studied widely. In 2012, He et al. proposed a robust biometric-based user authentication scheme for WSNs. However, this paper demonstrates that He et al.’s scheme has some drawbacks: poor reparable problem, user impersonation attack, and sensor node impersonate attack.

Keywords—Security, authentication, biometrics, poor reparable, impersonation attack, wireless sensor networks.

I. INTRODUCTION

RECENTLY, wireless sensor networks (WSNs) have received a huge attention due to their promising applications in a variety of areas such as real-time traffic monitoring, measurement of seismic activity, wildlife monitoring and so on. In WSN, a large number of highly resource-constrained sensor nodes deployed to collect data or events in a specified geographic area[1]. In order to protect the important data and to prevent non-authorized users from gaining profit from the data, user authentication scheme should be offered[2], [3].

In 2010, Yuan et al.[4] proposed a biometric-based user authentication scheme for WSNs. Biometric keys can be a solution to solve the above security problems, which are based on physiological or behavioral characteristics of persons, such as fingerprints, faces, irises, and so on [5], [6], [7], [8], [9]. However, Yoon et al.[7] pointed out that Yuan et al.’s scheme is vulnerable to the insider attack, user impersonation attack, GW-node impersonation attack and sensor node impersonate attack. To improve security, Yoon et al.’ proposed an improved scheme that can withstand various attacks. In 2012, He et al.[10], however, pointed out that Yoon et al.’s scheme is still vulnerable to the denial-of-service attack (DoS) and the sensor node impersonation attack and then proposed another improved scheme to overcome the weaknesses in Yoon et al.’s scheme. Nevertheless, this paper pointed out that He et al.’s scheme also has some drawbacks: poor reparable problem [11], [12], [13], [14], user impersonation attack, and sensor node impersonate attack [15].

This paper is organized as follows. Section 2 reviews He et al.’s scheme and then shows the security problems of the He et al.'s scheme in Section 3. Our conclusions are presented in Section 4.

E.-J. Yoon is with the Department of Cyber Security, Kyungil University, 33 Buhu-Ri, Hayang-Ub, Kyungsan-Si, Kyungsangkuk-Do 712-701, Republic of Korea e-mail: ejyoon@kiu.ac.kr.

K.-Y. Yoo is with the School of Computer Science and Engineering, College of IT Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea e-mail: yook@knu.ac.kr. (Corresponding author.)

Manuscript received July 1, 2012; revised July 1, 2012.

II. REVIEW OF HE ET AL.’S SCHEME

This section briefly reviews He et al.’s scheme [10]. The scheme includes three phases: registration, login, and authentication. The following notations are used throughout this paper.

- U_i: the i-th user;
- ID_i, PW_i, B_i: Identity, password, and biometric template of U_i, respectively;
- $GW-node$: Gateway node of WSN;
- x, y: two master keys of GW-node;
- S_j: the j-th sensor node;
- SID_j: S_j identity;
- $d(\cdot)$: symmetric parametric function;
- τ: predetermined threshold for biometric verification;
- $E_k(\cdot)$: a symmetric encryption function with key k;
- $D_k(\cdot)$: the decryption function corresponding to $E_k(\cdot)$;
- $h(\cdot)$: Secure one-way hash function [16];
- \oplus: bit-wise exclusive-or(XOR) operation;
- $\|$: concatenation of messages.

In order to execute He et al.’s framework, He et al. considered that the gateway is a trusted node and it hold two master keys (x and y), which are sufficiently large for the sensor network. Before starting the system, it is assumed that a long-term secret key $h(SID_j\|y)$ generated by gateway is stored in sensor node S_j before the node is deployed, where SID_j is the identity of S_j.

A. Registration Phase

When a user U_i wants to register and become a new legal user, as shown in Fig. 1, the following steps are performed during the user registration phase.

Step 1. $U_i \rightarrow GW-node$: $\{ID_i, h(PW_i\|B_i\|b_i), B_i\}$ U_i generates a random number b_i, freely chooses his/her identity ID_i, password PW_i, and also imprints his/her personal biometric impression B_i at the sensor. U_i then interactively submits ID_i, $h(PW_i\|B_i\|b_i)$, B_i to GW-node via secure channel.

Step 2. GW-node \rightarrow U_i: Smartcard(R_i, B_i, $h(\cdot)$, $d(\cdot)$, τ) On receiving the registration request, GW-node computes $R_i = h(ID_i\|x) \oplus h(PW_i\|B_i\|b_i)$, where x is a secret key maintained by GW-node. Then, GW-node writes the secure information $\{R_i$, B_i, $h(\cdot)$, $d(\cdot)$, $\tau\}$ to the memory of U_i’s smart card and issues it to U_i through a secure channel.

Step 3. Upon receiving the smart card, U_i inputs the random number b_i into his/her smart card and finish the registration.
B. Login Phase

When the user U_i wants to access data from the WSN, the login phase is invoked as shown in Fig. 2. He/she must perform the following steps.

Step 1. U_i inserts his/her smart card into the card reader and inputs the personal biometrics B_i^* on the specific device to verify his/her biometrics. If $d(B_i, B_i^*) \geq T$, U_i’s smart card rejects the request. Otherwise, U_i enters his/her password PW_i and his/her identity ID_i, and then the smart card generates a random number r_i and computes $D_i = R_i \oplus h(PW_i||B_i||b_i)$, $k_i = h(D_i||T_i)$, $C_i = E_{C_k}(ID_i||r_i)$, where T_i is the current timestamp.

Step 2. $U_i \rightarrow$ GW-node: $M_1 = (ID_i, C_i, T_i)$

U_i sends the login message $M_1 = (ID_i, C_i, T_i)$ to the GW-node.

C. Authentication Phase

When the GW-node receives the login request M_1 at time T^*, it will perform the following steps to authenticate U_i.

Step 1. GW-node \rightarrow Sensor node S_j: $M_2 = (ID_i, C_q, T_q)$

GW-node checks the freshness of T_i by verifying whether the equation $(T^* - T) \geq \Delta T$ holds. If the equation holds, GW-node stops the session, where ΔT is the expected time interval for the transmission delay. GW-node computes $D'_i = h(ID_i||x)$, $k'_i = h(D'_i||T_i)$ and $ID'_i||r'_i = D_k(C_q)$. Then GW-node checks whether ID_i and ID'_i are equal. If they are not equal, GW-node stops the session. Otherwise, GW-node computes $C_q = E_{C_k}(ID'_i||r'_i)$ and sends the message $M_2 = (ID_i, C_q, T_q)$ to S_j, where T_q is the current timestamp.

Step 2. Sensor node $S_j \rightarrow U_i$: $M_3 = (RM, V_s, T_s)$

Upon receiving the message M_2, S_j checks the freshness of T_q by verifying whether the equation $(T^* - T_q) \geq \Delta T$ holds, where T^* is the time S_j receives M_2. If the equation holds, S_j stops the session, where ΔT is the expected time interval for the transmission delay. S_j computes $k'_q = h(h(SID_j||y)||T_q)$ and $ID'_q||r'_q = D_k(C_q)$. Then S_j checks whether ID'_q and ID_q are equal. If they are not equal, S_j stops the session. Otherwise, S_j accepts the response message RM.

III. SECURITY WEAKNESSES OF HE ET AL.’S SCHEME

This section demonstrates that He et al.’s scheme [10] has some drawbacks: poor reparability problem, user U_i impersonation attack attacks, and sensor node S_j impersonation attack.

A. Assumptions for Security Analysis [13], [14]

Suppose that an adversary Eve has total control ability over the communication channel between the user U_i and the GW-node (including sensor node S_j), which means that he/she can insert, delete, or alter any messages in the channel. According to the researches in [13], [14], all existing smart cards are vulnerable to differential power analysis since the secret values stored into a smart card could be extracted by monitoring its power consumption. Based on these facts[13], [14], this paper assumes that the adversary Eve can steal the user’s smart card and extract the secret values stored in the smart card. Based on these two assumptions, this paper shows some drawbacks of He et al.’s scheme [10].

B. Poor Reparability Problem [11], [12]

He et al.’s scheme is not reparable [11], [12]. In He et al.’s scheme, an adversary Eve can extract the secret value $R_i =$...
Eve can obtain the corresponding password PW_i.

Step 1. The adversary Eve intercepts the login request $M_1 = (ID_i, C_i, T_i)$.

Step 2. Eve guesses a password PW_i and then obtains D_i^* by computing $R_i \oplus h(PW_i || B_i || b_i)$.

Step 3. Eve computes $k_i^* = h(D_i^* || T_i)$ and obtains $ID_i^* || r_i^*$ by decrypting $C_i = E_{k_i}(ID_i || r_i)$ with k_i^*.

Step 4. Eve verifies ID_i^* is equal to ID_i. If $ID_i^* = ID_i$, then Eve has correctly guessed the password $PW_i = PW_i$ and $D_i^* = D_i$.

Step 5. Once the adversary Eve has correctly obtain $D_i = h(ID_i || x)$, then Eve can impersonate the legal user U_i.

The above attack can be failed if user U_i has detected that his/her identity D_i has been compromised and then changed his/her current password PW_i via some means that is not specified in He et al.’s scheme [12]. Because the password PW_i is the function of the identity ID_i of the user U_i and the secret key x of GW-node, GW-node has to change ID_i or x when changing the password PW_i for U_i. However, we can see that x is commonly used for all users rather than specifically used for only U_i in He et al.’s scheme. That is, it is not reasonable and efficient to change the secret key x for the security of a single user U_i. Moreover, it is also impractical to change identity of the user U_i. As a result, He et al.’s scheme is not reparable.

\[h(ID_i || x) \oplus h(PW_i || B_i || b_i), \] biometric impression B_i, and random number b_i, which is stored in the smart card of the user U_i, by using above described differential power analysis attack [13], [14]. After obtaining these secret values (R_i, B_i, b_i), Eve can obtain the corresponding password PW_i by performing the following off-line password guessing attack.

Fig. 2. Login and authentication phases of He et al.’s scheme
C. User Uᵢ Impersonation Attack

He et al.’s scheme is vulnerable to the user Uᵢ impersonation attack [15]. Once the adversary Eve obtained PWᵢ through above described differential power analysis attack [13], [14], he/she can obtain the secret value Dᵢ = h(IDᵢ||x) by computing Dᵢ = Rᵢ ⊕ h(PWᵢ||Eᵢ||hᵢ). Then Eve can forge Uᵢ’s login message Mᵢ by computing kᵢ = h(Dᵢ||Tᵢ) and Cᵢ = Eᵢ(1Dᵢ||rᵢ), where Tᵢ is the current timestamp and rᵢ is the random number which generated by the adversary Eve. Finally, Eve sends a forged message Mᵢ = (IDᵢ, Cᵢ, Tᵢ) to the GW-node. It is easy to see the forged message can pass GW-node’s verification because GW-node will also compute same secret value Dᵢ = h(IDᵢ||x) with Dᵢ and its secret key x. Hence, He et al.’s scheme is vulnerable to user Uᵢ impersonation attack.

D. Sensor Node Sᵢ Impersonation Attack

He et al.’s scheme is vulnerable to sensor node Sᵢ impersonation attack [15]. Once the adversary Eve obtained the secret value Dᵢ = h(IDᵢ||x) by the above described differential power analysis attack [13], [14], he/she can impersonate the sensor node Sᵢ as follows:

Step 1. Upon intercepting the login request message Mᵢ = (IDᵢ, Cᵢ, Tᵢ), Eve computes kᵢ = h(Dᵢ||Tᵢ) and obtains IDᵢ||rᵢ by decrypting Cᵢ as IDᵢ||rᵢ = Dᵢ(1Cᵢ).

Step 2. Eve masquerades the sensor node Sᵢ by computing Vᵢ = h(IDᵢ||rᵢ||RMᵢ||Tᵢ) and sending a forged message Mᵢ = (RMᵢ, Vᵢ, Tᵢ) to Uᵢ, where Tᵢ is the current timestamp and RMᵢ is the fixed Sᵢ’s respond message.

It is easy to see that the forged message Mᵢ = (RMᵢ, Vᵢ, Tᵢ) can pass Uᵢ’s verification because Vᵢ is always equal to h(IDᵢ||rᵢ||RMᵢ||Tᵢ). Hence, He et al.’s scheme is vulnerable to Sensor node Sᵢ impersonation attack.

IV. CONCLUSIONS

This paper demonstrated that He et al.’s robust biometric-based user authentication scheme for WSNs has some drawbacks: poor redefinability problem, user Uᵢ impersonation attack, and sensor node Sᵢ impersonation attack. Thus, He et al.’s scheme cannot be applicable to real WSN communication environments. The schemes based on timestamps must overcome the problems of clock synchronization and delay-time limitation so that we better implement them in fast local area networks. Because He et al.’s scheme also used timestamps to resist replay attacks, the scheme can lead to serious clock synchronization problems, namely that the user’s time and the GW-node’s time (including sensor nodes) must differ only in a small range. For example, in a large-scale WSN network, it is almost impossible to maintain the synchronization of clocks among all entities in the WSN network and to guarantee the delay time of transmission. Further works will be focused on improving the He et al.’s scheme which can be able to provide greater security and provides computation efficiency.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their helpful comments in improving our manuscript.

REFERENCES

