SimplexIS: Evaluating the Impact of e-Gov Simplification Measures in the Information System Architecture

Bruno Félix, André Vasconcelos, José Tribolet

Abstract—Nowadays increasingly the population makes use of Information Technology (IT). As such, in recent year the Portuguese government increased its focus on using the IT for improving people’s life and began to develop a set of measures to enable the modernization of the Public Administration, and so reducing the gap between Public Administration and citizens. Thus the Portuguese Government launched the Simplex Program. However these SIMPLEX eGov measures, which have been implemented over the years, present a serious challenge: how to forecast its impact on existing Information Systems Architecture (ISA). Thus, this research is focus in addressing the problem of automating the evaluation of the actual impact of implementation an eGovSimplification and Modernization measures in the Information Systems Architecture. To realize the evaluation we propose a Framework, which is supported by some key concepts as: Quality Factors, ISA modeling, Multicriteria Approach, Polarity Profile and Quality Metrics.

Keywords—Information System Architecture, Evaluation, eGov Simplification measure, Multicriteria Evaluation

I. INTRODUCTION

Nowadays more people makes use of Information Technology (IT), with objective to enhancing the effectiveness and efficiency in solving their tasks. As such, in recent year the Portuguese government, like other countries, increased its focus on using the IT for improving people’s life and began to develop a set of measures to enable the modernization of the Public Administration, and so reducing the gap between Public Administration and citizens.

Thus the Portuguese Government launched the Simplex Program[1] (Portuguese e-government program). The main objectives of this Program is to change and reengineering the process, to reduce bureaucracy of the Public Administration, to simplify and reduce repetitive procedures in order to make life easier for citizens and business in their relationship with the Public Administration.

However these SIMPLEX eGov measures, which have been implemented over the years, present a serious problem: they don’t forecast the existence of an Information Systems Architecture’s evaluation that shows the impact of these same measures on the Information System Architecture (ISA).

Therefore, it can’t be determined the real impact that the implementation of a SIMPLEX measure brings to the global Public Administration (PA) ISA Reference, in other words without an assessment at the ISA level it isn’t clear if the introducing a new eGovSimplification and Modernization measure will contribute to the Public Administration achieve its objectives or whether it will contribute for to moving away from their goals.

Nowadays is hard to evaluate an Information Systems Architecture on a clear and concise way and, consequently, it’s also difficult to computerize that same evaluation. We verified that currently still don’t exist a defined methodology to evaluate SIMPLEX impact in the ISA, in architectural phase.

Thus, this research is focus in addressing the problem of evaluating the actual impact of implementing an eGov measure in the Information Systems Architecture in an automated form;considering Reference Architectures, a set of Norms, Best Practices and Qualities that must be considered. Information System Architecture evaluation is a fresh topic, when compared with other more mature areas, (as Software Architecture Evaluation [2]), demanding research in order to generalize its use by the industry.

For this research a scientific work with rigor and validity is required to define and follow a research methodology. So we opted for the choice of a broad method based on the induction principle and the choice of a quantitative approach to the implementation of Action-Research. In choose Action-Research should be noted the similarity with this research: collecting data, constructed hypothesis, (proposed Framework to ISA Evaluation) and corresponding validation (with applying SimplexIS). The applicability of the methodology was developed with base on several case studies.

This document is divided into the following sections:

Framework for evaluating a SIMPLEX measure, where is presented the evaluation Framework and the associated concepts with ISA modeling;

- SimplexIS described the application that allows the ISA evaluation to a automated way;

- Conclusions that resuming the main contributions of this research.

B. F. is with the INESC – Instituto de Engenharia de Sistemas e Computadores and Department of Information Systems and Computer Engineering, Instituto Superior Técnico, Technical University of Lisbon, Portugal. email:bruno.felix@ist.utl.pt

A. V. is with the INESC – Instituto de Engenharia de Sistemas e Computadores and Department of Information Systems and Computer Engineering, Instituto Superior Técnico, Technical University of Lisbon, Portugal. email:andre.vasconcelos@ceo.inesc.pt

J. T. is with the INESC – Instituto de Engenharia de Sistemas e Computadores and Department of Information Systems and Computer Engineering, Instituto Superior Técnico, Technical University of Lisbon, Portugal. email:jose.tribolet@ceo.inesc.pt
II. FRAMEWORK FOR EVALUATING A SIMPLEX MEASURE

The choice of a methodology to evaluate the ISA of a SIMPLEX measure was a key, to realize this evaluation on a clear and concise way. Thus to evaluate the ISA it was defined on a Framework that allows an assessment as to their ISA qualities. This Framework arises from the extension of the Framework to evaluate data models presented by Moody and Shanks [3]. The evaluation of the quality of an ISA and other data models is a discipline, which just began to emerge. Quantitative measurement of quality is almost non-existent [4]. In the recent past some models for assessing architectures qualities have emerged in the literature, however most of these models suggest criteria that may be used to evaluate the quality of data models. Nevertheless quality criteria isn’t enough on its own to ensure quality in practice, because different people will generally have different interpretations of what they mean. According to Zulfner[3], is necessary to define the measurable criteria for assessing quality, thus reducing the subjectivity and bias in the evaluation process. To reduce the subjectivity and bias was necessary to introduce a set of quality metric to evaluate the quality factors of an ISA. This approach will be presented in more detail below.

The framework proposed is summarized by the conceptual model presented below,[6].

![Framework for evaluating ISA of a SIMPLEX measure](image)

A. Stakeholders

Stakeholders are people who are involved in building the Information System of SIMPLEX measure, and therefore have an interest in its quality [4].

B. Quality Factors

Quality factors have been used in literature since the early hierarchical quality models [7]. According to [4], the quality factors can be defined as the properties of a data model that contribute to its quality. The popularity is recognized in the fact that the International Standard ISO 9126 is based on them. This standard recommends that the number of key factors should be kept between three and eight.

- Functionality - capacity of a set of information systems to providing services that meet the objectives and business strategies.
- Reliability - set of attributes that bear on the capability of information systems to maintain its level of performance under stated conditions for a stated period of time.
- Efficiency - set of attributes that bear on the relationship between the level of performance of the information systems and the amount of resources used, under stated conditions.
- Maintenance - set of attributes that bear on the effort needed to make specified modifications in information systems.
- Portability - set of attributes that bear on the ability of information systems to be changed from one environment.
- Alignment - capacity of ISA components operating in accordance with the requirements/resources that are required/available in other architectural level in order to contribute for the improvement of organizational performance over the time.

These quality factors are evaluated trough a set of quality metrics, which are described in the section below.

C. Quality Metrics

As discussed by [9], metrics are quantitative interpretation of the observable architecture’s attributes. These are the ways of evaluate particular quality factors. There may be multiple quality metrics for each quality factor.

The table below presents a resume of some key metrics used in this work, to evaluate the existing qualities factors. The implementation of these metrics results from the adaptation/extension of some existing metrics [4], [8], [10], and in other cases the creation of new quality metrics in order to meet the needs of ISA evaluated through of their quality factors.

1 ISO 9126 is the software product evaluation standard from the International Organization for Standardization.
In the next table we present an example for a quality metric. Each metric is defined according to the:

- **Name** is the name of quality metric;
- **ID** is a metric identifier;
- **Computing Formula** is a representation of calculation method of the metric value;
- **Architectural Level** describes the architectural levels that may be affected for the metric;
- **Range Value** is a possible range value for the metric;
- **Description** is a short description of the reasons for the quality metric.

TABLE I

<table>
<thead>
<tr>
<th>Quality Factor</th>
<th>Quality Metrics</th>
<th>Architectural Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>Number of Information Entities Factor</td>
<td>Informational</td>
</tr>
<tr>
<td></td>
<td>Number of core entity specialization in Informational Architecture Factor</td>
<td>Informational</td>
</tr>
<tr>
<td></td>
<td>Number of Informational Architecture Entities for registry interactions events between citizens or organizations with PA</td>
<td>Informational</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Web services Factor</td>
<td>Application</td>
</tr>
<tr>
<td>Interoperability</td>
<td>Platform Utilization Factor</td>
<td>Application</td>
</tr>
<tr>
<td>Reliability</td>
<td>Technology Redundancy Factor</td>
<td>Technology</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Service Cyclomatic Complexity Factor</td>
<td>Application</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Lack of COheson in «IS Block»</td>
<td>Application, Informational</td>
</tr>
<tr>
<td></td>
<td>Operation Number in IS «Block»</td>
<td>Application, Informational</td>
</tr>
<tr>
<td></td>
<td>Response to a Service Factor</td>
<td>Application, Informational</td>
</tr>
<tr>
<td>Alignment</td>
<td>Number of Application by Informational Entity</td>
<td>Application, Informational</td>
</tr>
<tr>
<td></td>
<td>Low Level Information Entity – IT Block Data Type Mismatch Factor</td>
<td>Application, Informational</td>
</tr>
<tr>
<td>Portability</td>
<td>Operating System Possible Factor</td>
<td>Technology</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Name</th>
<th>Distinct Technology of IS Services Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>MFu2</td>
</tr>
<tr>
<td>Computing Formula</td>
<td>The Distinct Technology of IS Services Factor are available is calculated by accounting for each «ISService>> the number of «<ITService>> associated.</td>
</tr>
<tr>
<td>$MF_u_2 = \sum_i \frac{# <<ISService>>}{# <<ITService>>}$</td>
<td></td>
</tr>
<tr>
<td>Architectural Level</td>
<td>Application, Technology</td>
</tr>
<tr>
<td>Value Range</td>
<td>[0;1]</td>
</tr>
<tr>
<td>Description</td>
<td>Interoperability and portability of IS, represented by ISA, increases trough the number of technologies that is available in a same interface. The calculation of this metric can be viewed as the technologies average in which each applicational interface is available.</td>
</tr>
</tbody>
</table>

D. Weights

According to Moody [4], a weight defines the relative importance of different quality factors in a problem situation. These are used to make trade-offs between different quality factors.

In this research we defined for each quality factor and quality metric a weight with value range between 0-5 to according their importance. The weight is defined through the M-Macbeth Approach, [11]. The use of this technique allows that the attribution of each weight can be made in a less subjective way, since the attributions of weights aren’t only dependent of human action.

E. Multicriteria Evaluating

The role of multicriteria evaluation approach is to minimize the difficulties that human decision makers have to manage complex data in a consistent way, [11]. The multicriteria evaluation technique allows distinguishing the weights of each option. To apply this evaluation technique in our research we use the M-Macbeth Software. The M-Macbeth Software, among other characteristics, allows the calculation weights to metrics and quality factors. The figure below shows an example of using this software during the research.
- Minimizes the difficulties of decision-makers;
- Reduces subjectivity;
- Increases consistency of results;
- Manages complex problems involving qualitative value scores and weights in a facilitated form.

F. ISA and Representation Frameworks (FCEO and TOGAF-ADM)

According [12], ISA was defined as the representation of the Information System (IS) components, their relations, principles, and guidelines to support the business. In this work, we adopted the model presented by [13], which divides ISA into three layers: Informational Architecture, Applicational Architecture, and Technology Architecture. This architecture model is a key tool to help in corporate governance because it allows to know alignment or non-alignment between the organization strategy, your business, and the technologies that supports it. So, given the constant evolution in technology and administrative simplification in Public Administration, often using IT, the use of ISA is very necessary so that there will be a greater alignment between PA, your business, and used IT to support the business.

As such, to substantial improvement in the implementation quality of SIMPLEX measures, it is required that these measures use the ISA, thus allowing a better representation and evolution.

As earlier mentioned, the main objective of this research is to evaluate the actual impact of implementing SIMPLEX measures in the ISA in an automated way; considering a Reference Architecture, Norms, and Qualities that they must attend.

To reach such an end, it will be necessary to introduce a metavmodel for describing the SIMPLEX measure in terms of Information Systems Architecture; this is a critical step for the alignment between information system and business.

In order to be able to realize the automated evaluation of the Information System Architecture (that is, the main goal of this research), we need to analyze a set of tools and Frameworks in order to identify the most appropriate to the observed problem. In the first phase, we analyzed the possible utilization to the CEO Framework (CEO Framework is UML profile to modeling ISA, view [8], for further detail) that modeling profile to ISA. This Framework showed that it is excellent for this purpose, however, it doesn’t exist, modeling tools that support it. To overcome, this difficulty we created a new UML profile for Enterprise Architect [14], tool, in order to support the use of CEO Framework to ISA modeling.

In the next picture, you can see a small example with the new UML profile.

![Fig. 3 Example of using new UML Profile](image-url)

The choice of the Enterprise Architect tool was derived from the possibility of creating new Add-Ins and ability to extensibility, can meet the needs of this research. One of these needs is using the ADM methodology (constituent part of TOGAF Framework), [15]. The ADM methodology serves that metavmodel to describe and represent the ISA of SIMPLEX measure, in other words, this metavmodel to representation a SIMPLEX measure. However, we verified a need to introduce a set of changes and adaptations to the ADM methodology to meet the needs before observed problems.

![Fig. 4 Example TOGAF-ADM adaptation in EA](image-url)
The set of changes and adaptations is possible because the ADM methodology is a generic methodology for architecture development, however in many times is necessary to modify or extend the methodology to meet a specific need. Thus, one of the tasks before proceeding to the use the ADM will be review application components. The main objective of using the ADM methodology is to support the Information System Architecture development. We still verify that, the CEO Framework and ADM methodology are supported by the Enterprise Architect tool, so we only need to introduce a set of extension to meet the changes and adaptions. Thus we analyzed the possibility of combining the proprieties of CEO Framework as modeling language with the ADM as a methodology for development and support Information System Architecture, so that the two methods complement each other.

In order to cover fully the evaluation issue it is still necessary to introduce an Add-In for Enterprise Architect to support the calculation of the metrics value in order to produce results that can be compared with a set of Reference Architectures, Standards and Guidelines that meet the SIMPLEX measure development must obey. This issue will be detailed later, in this article (see section III SIMPLEXIS).

G. Polarity Profile

In order to make the evaluation of an ISA based on quality factors it is necessary to define the required objectives for each quality factor, thereby establishing a comparison relationship between the qualities of an ISA Reference and ISA of a SIMPLEX measure.

The chosen solution is to use a Polarity Profile, [16]. For each criteria, there are a range of values. The required quality criteria is defined as a single value on a horizontal line. The actual quality achieved is also defined as a single value on the same line. The advantage of using a Polarity Profile is that its format can be easily understood by anyone, [17]. Further, it is easy to determine whether or not a criterion has been over-engineered, since its actual quality value will be further advanced along the line than it’s required quality value. According to [17], each organization will use different metrics and metric approaches to measure different quality attributes. In order to identify the required quality for each criterion in the Polarity Profile, the properties of that criterion need to be measured using metrics. The same metrics should be used to identify the actual quality for that criterion.

In sub-section C. (Quality Metrics) are already defined metrics that are used during this research in the evaluation of the quality factors. Figure above shows an example of the Polarity Profile.

Having considered Polarity Profile it might be useful to produce a single value of quality which may be used to indicate the overall quality of a product in terms of its required versus actual values, [16]. This single value shows the overall quality of a product in terms of the percentage of quality requirements met. According same author, the advantage of producing a single quality value for a product, is that it simplifies quality comparisons between architectures.

Formulas to calculate the overall quality value:

- Required Key Quality Factor (KQF)

$$RKQF = \sum_{i=1}^{n} KQF_i$$

- Actual Key Quality Factor (KQF)

$$AKQF = \sum_{i=1}^{n} KQF_i$$

- Overall quality

$$Q = \frac{AKQF \times 100}{RKQF}$$

III. SIMPLEXIS

Meeting a principal focus of this research, the evaluation in a computed form of SIMPLEX measure in terms of ISA, there was a need of implement a software tool that supports the evaluation. The application design was performed based on the Evaluation Framework presented in the previous section. The figure below shows an example of using the application.
Although results from the use of the methodology have been positives, there are a number of areas that require further investigation. The approach has been tested, but its scalability is uncertain and can only become clear after extensive use of the methodology. The quality factors set currently consists of six attributes, but again further this number may change on the evaluation needs depending. Moreover, metrics that evaluation each quality factor, despite their importance to the approach, need greater validation with its application in several case studies.

REFERENCES