New application of EHTA for the generalized (2+1)-dimensional nonlinear evolution equations

Mohammad Taghi Darvishi, Maliheh Najafi and Mohammad Najafi

Abstract—In this paper, the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (shortly CBS) equations are investigated. We employ the Hirota’s bilinear method to obtain the bilinear form of CBS equations. Then by the idea of extended homoclinic test approach (shortly EHTA), some exact soliton solutions including breather type solutions are presented.

Keywords—EHTA, (2+1)-dimensional CBS equations, (2+1)-dimensional breaking soliton equation, Hirota’s bilinear form.

I. INTRODUCTION

The generalized (2+1)-dimensional nonlinear evolution equations is

$$u_{xt} + au_xu_{xy} + bu_xu_y + u_{xxxy} = 0,$$

(1)

where a and b are constant parameters. For different values of these parameters we have special kinds of equation (1), e.g., for $a = 4$ and $b = 2$, we have the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation

$$u_{xt} + 4u_xu_{xy} + 2u_xu_y + u_{xxxy} = 0,$$

(2)

the (2+1)-dimensional breaking soliton equation for $a = -4$, $b = -2$,

$$u_{xt} - 4u_xu_{xy} - 2u_xu_y + u_{xxxy} = 0,$$

(3)

and the (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation for $a = b = 4$,

$$u_{xt} + 4u_xu_{xy} + 4u_xu_y + u_{xxxy} = 0.$$

(4)

In recent years, many kinds of powerful methods have been proposed to find solutions of nonlinear partial differential equations, numerically and/or analytically, e.g., the variational iteration method [1], [2], [3], the homotopy perturbation method [4], [5], [6], [7], [8], parameter expansion method [9], [10], [11], spectral collocation method [12], [13], [14], [15], [16], homotopy analysis method [17], [18], [19], [20], [21], [22], and the Exp-function method [23], [24], [25], [26], [27], [28].

In this paper, we solve equation (1) by the EHTA and obtain some exact and new solutions for (2), (3) and (4).

There are some studies on CBS equations. [29] obtained some new traveling wave solutions for the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation. Wazwaz [30] considered the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation. He employed the Cole-Hopf transformation and the Hirota’s bilinear method to derive multiple-soliton solutions and multiple singular soliton solutions for the equation. Also he derived the necessary conditions for complete integrability of the equation. Also he [31] employed the Hirota’s bilinear method to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation.

II. DESCRIPTION OF EXTENDED HOMOCLINIC TEST APPROACH

For a governing equation like (1), we consider a general form of a higher dimensional nonlinear evolution equation

$$F(u, u_t, u_x, u_y, u_{xx}, u_{yy}, \ldots) = 0,$$

(5)

where $u = u(x, y, t)$ and F is a polynomial of u and its derivatives. The basic idea of this method applies the Painlevé analysis to make a transformation as

$$u = T(f)$$

(6)

for some new and unknown function f. Then we use this transformation in a high dimensional nonlinear equation of the general form. By substituting (6) in (5), the first one converts into the Hirota’s bilinear form, which it will solve by taking a special form for function f and assuming that the obtained Hirota’s bilinear form has solutions in EHTA, then we can specify the unknown function f; cf. [32].

III. NEW APPLICATION OF EHTA

In this paper, we investigate explicit formula of solutions of the following generalized (2+1)-dimensional nonlinear evolution equations

$$u_{xt} + au_xu_{xy} + bu_xu_y + u_{xxxy} = 0,$$

(7)

To solve eq. (8), we consider the following cases:

A. Case 1: $a=b$

Suppose $a = b$, hence we have

$$u_{xt} + au_xu_{xy} + au_xu_y + u_{xxxy} = 0.$$

(8)

To solve eq. (8) we introduce a new dependent variable w by

$$w = \frac{6}{a} (\ln f)_x$$

(9)
where \(f(x, y, t) \) is an unknown real function which will be determined. Substituting eq. (9) into eq. (8), we obtain the following Hirota's bilinear form
\[
(D_x^2 D_y + D_x D_y^2) f \cdot f = 0,
\]
where the D-operator is defined by
\[
D_x^n D_y^m D_x^k f(x, y, t) \cdot g(x, y, t) =
\left(\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} \right)^n \left(\frac{\partial}{\partial y_1} - \frac{\partial}{\partial y_2} \right)^m \left(\frac{\partial}{\partial t_1} - \frac{\partial}{\partial t_2} \right)^k \left[f(x_1, y_1, t_1) g(x_2, y_2, t_2) \right],
\]
and the right hand side is computed in
\[
x_1 = x_2 = x, \quad y_1 = y_2 = y, \quad t_1 = t_2 = t.
\]
Now we suppose the solution of eq. (10) as
\[
f(x, y, t) = e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1},
\]
where \(\xi_1 = a_i x + b_i y + c_i t, \quad i = 1, 2 \)
and \(a_i, b_i, c_i \) and \(\delta_1 \) are some constants to be determined later. Substituting eq. (11) into eq. (10), and equating all coefficients of \(\exp(\xi_1) \), \(\exp(-\xi_1) \), \(\sin(\xi_2) \) and \(\cos(\xi_2) \) to zero, we get the following set of algebraic equations for \(a_i, b_i, c_i, \delta_1, (i = 1, 2) \)
\[
\begin{align*}
2a_2 a_1^2 + c_1 a_1 + a_1^2 b_1 - a_2 c_2 - 3 a_1^2 b_2 a_2 - 3 a_2^2 a_1 c_1 - 1 &= 0, \\
2a_2 b_1^3 + a_1^2 b_2 - a_1 b_2 - 3 a_1^2 b_2 a_2 - 3 a_2^2 a_1 c_1 - 1 &= 0, \\
4 \delta_2 b_2 a_2^3 - \delta_1^2 c_2 a_2 + 4 a_1 c_1 a_1 + 16 a_1^3 b_1 &= 0.
\end{align*}
\]
Solving the system of equations (13) with the aid of Maple, yields the following cases:

\textbf{case i:}

\[
\begin{align*}
b_1 &= 0, c_1 = 2 a_1 b_2 a_2, c_2 = b_2 (-a_1^2 + a_2^2), \\
\delta_2 &= -\frac{\delta_1^2 (a_1^2 + 3a_2^2)}{8a_1^4}
\end{align*}
\]
for some arbitrary complex constants \(a_1, a_2, b_2 \) and \(\delta_1 \). Substitute eq. (14) into eq. (9) with eq. (11), we obtain the solution as
\[
\begin{align*}
f(x, y, t) &= e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1}, \\
u(x, y, t) &= 6 \frac{-a_1 e^{-\xi_1} + \delta_1 \sin(\xi_2) a_2 + \delta_2 a_1 e^{\xi_1}}{a (e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1})}
\end{align*}
\]
for
\[
\begin{align*}
\xi_1 &= a_1 x + 2 a_1 b_2 a_2 t, \\
\xi_2 &= a_2 x + b_2 y + (-a_1^2 b_2 + b_1 a_2^2) t,
\end{align*}
\]
and
\[
\delta_2 = -\frac{\delta_1^2 (a_1^2 + 3a_2^2)}{8a_1^4}
\]

If \(\delta_2 > 0 \), then we obtain the exact breather cross-kink solution
\[
\begin{align*}
u(x, y, t) &= \frac{2 a_1 \sqrt{-\delta_2} \sinh(\xi_1 - \theta) + \delta_1 \sin(\xi_2) a_2}{a (2 \sqrt{-\delta_2} \cos(\xi_1 - \theta) + \delta_1 \cos(\xi_2))} \\
\theta &= \frac{1}{2} \ln(-\delta_2)
\end{align*}
\]
for
\[
\begin{align*}
a_2 &= 0, b_1 = 0, c_1 = 0, c_2 = -a_1^2 b_2
\end{align*}
\]
for some arbitrary complex constants \(a_1, b_1, \delta_1, \delta_2 \). Substitute eq. (17) into eq. (9) with eq. (11), we obtain the solution as follows
\[
\begin{align*}
f(x, y, t) &= e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1}, \\
u(x, y, t) &= 6 \frac{-a_1 e^{-\xi_1} + \delta_1 \sin(\xi_2) a_2 + \delta_2 a_1 e^{\xi_1}}{a (2 \sqrt{-\delta_2} \cos(\xi_1 - \theta) + \delta_1 \cos(\xi_2))}
\end{align*}
\]
for
\[
\begin{align*}
\xi_1 &= a_1 x, \\
\xi_2 &= b_2 y - a_1^2 b_2 t
\end{align*}
\]
If \(\delta_2 < 0 \), then we obtain the exact breather cross-kink solution
\[
\begin{align*}
u(x, y, t) &= \frac{2 a_1 \sqrt{-\delta_2} \cosh(\xi_1) + \delta_1 \sin(\xi_2) a_2}{a (2 \sqrt{-\delta_2} \sinh(\xi_1 - \theta) + \delta_1 \cos(\xi_2))} \\
\theta &= \frac{1}{2} \ln(-\delta_2)
\end{align*}
\]
for
\[
\begin{align*}
\xi_1 &= a_1 x + 2 a_1 b_2 a_2 t, \\
\xi_2 &= a_2 x + b_2 y + (-a_1^2 b_2 + b_1 a_2^2) t,
\end{align*}
\]
and
\[
\delta_2 = -\frac{\delta_1^2 (a_1^2 + 3a_2^2)}{8a_1^4}
\]

\textbf{case ii:}

\[
\begin{align*}
\xi_1 &= a_1 x, \\
\xi_2 &= b_2 y - a_1^2 b_2 t
\end{align*}
\]
If \(\delta_2 > 0 \), then we obtain the exact breather cross-kink solution
\[
\begin{align*}
u(x, y, t) &= \frac{2 a_1 \sqrt{-\delta_2} \sinh(\xi_1 - \theta) + \delta_1 \sin(\xi_2) a_2}{a (2 \sqrt{-\delta_2} \cosh(\xi_1) + \delta_1 \cos(\xi_2))} \\
\theta &= \frac{1}{2} \ln(-\delta_2)
\end{align*}
\]
for
\[
\begin{align*}
a_2 &= 0, b_1 = 0, c_1 = 0, c_2 = -a_1^2 b_2
\end{align*}
\]
for some arbitrary complex constants \(a_1, b_1, \delta_1, \delta_2 \). Substitute eq. (17) into eq. (9) with eq. (11), we obtain the solution as follows
\[
\begin{align*}
f(x, y, t) &= e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1}, \\
u(x, y, t) &= 6 \frac{-a_1 e^{-\xi_1} + \delta_1 \sin(\xi_2) a_2 + \delta_2 a_1 e^{\xi_1}}{a (2 \sqrt{-\delta_2} \sinh(\xi_1) + \delta_1 \cos(\xi_2))}
\end{align*}
\]
for
\[
\begin{align*}
\xi_1 &= a_1 x, \\
\xi_2 &= b_2 y - a_1^2 b_2 t
\end{align*}
\]
If \(\delta_2 < 0 \), then we obtain the exact breather cross-kink solution
\[
\begin{align*}
u(x, y, t) &= \frac{2 a_1 \sqrt{-\delta_2} \cosh(\xi_1) + \delta_1 \sin(\xi_2) a_2}{a (2 \sqrt{-\delta_2} \sinh(\xi_1) + \delta_1 \cos(\xi_2))} \\
\theta &= \frac{1}{2} \ln(-\delta_2)
\end{align*}
\]
for
\[
\begin{align*}
\xi_1 &= a_1 x + 2 a_1 b_2 a_2 t, \\
\xi_2 &= a_2 x + b_2 y + (-a_1^2 b_2 + b_1 a_2^2) t,
\end{align*}
\]
and
\[
\delta_2 = -\frac{\delta_1^2 (a_1^2 + 3a_2^2)}{8a_1^4}
\]
for
\[\xi_1 = ia_2x + b_1 y + (4ia_2b_2 - ic_2 + 4a_2^2b_1) t, \]
and
\[\delta_2 = \frac{\delta^2}{4}. \] (21)
We make the dependent variable transformation in equation (20) as follows
\[a_2 = i A_2, \]
\[b_2 = i B_2, \]
\[c_2 = i C_2, \] (22)
where \(A_2, B_2 \) and \(C_2 \) are real. We obtain new form for equation (20) as
\[u(x,y,t) = \frac{6A_2e^{-\xi_1} - \delta_1 \sinh (\xi_2) - \delta_2 A_2e^{\xi_1}}{a(e^{-\xi_1} + \delta_1 \cosh (\xi_2) + \delta_2 e^{\xi_1})} \] (23)
for
\[\xi_1 = -A_2x + b_1 y + (4A_2^2B_2 + C_2 - 4A_2^2b_1) t \]
\[\xi_2 = -A_2x + B_2y + C_2t. \]
If \(\delta_2 > 0 \) then we obtain the exact breather cross-kink solution
\[u(x,y,t) = \frac{6A_2(2\sqrt{\delta_2} \sinh(\xi_1^* - \beta) - \delta_1 \sinh(\xi_2^*))}{a(2\sqrt{\delta_2} \cosh(\xi_1^* - \beta) + \delta_1 \cosh(\xi_2^*))} \]
for
\[\beta = \frac{1}{2}\ln(\delta_2), \quad \delta_2 = \frac{\delta^2}{4}. \]
If \(\delta_2 < 0 \) then we obtain the exact breather cross-kink solution
\[u(x,y,t) = \frac{6A_2(2\sqrt{-\delta_2} \sinh(\xi_1^* - \beta) - \delta_1 \sinh(\xi_2^*))}{a(2\sqrt{-\delta_2} \cosh(\xi_1^* - \beta) + \delta_1 \cosh(\xi_2^*))} \]
for
\[\theta = \frac{1}{2}\ln(-\delta_2), \quad \delta_2 = \frac{\delta^2}{4}. \]

B. Case 2: \(a \neq b \)
For \(a \neq b \), we have
\[u_{xt} + \frac{a+b}{2}u_xu_{xy} + \frac{a+b}{2}u_{xx}u_y + u_{xxyy} + \frac{a-b}{2}u_{xxy} + \frac{b-a}{2}u_{xxyy} = 0. \] (24)
To solve eq. (24), we introduce a new dependent variable \(w \) by
\[w = \frac{12}{a+b}(\ln f)_x. \] (25)
where \(f(x,y,t) \) is an unknown real function which will be determined. Substituting eq. (25) into eq. (24), we obtain the following Hirota’s bilinear form
\[(D_x^2D_y + D_yD_x)f \cdot f + \frac{(a-b)}{2}f^2 \partial^2_x^{-1}(D_x(\ln f)_{xx} \cdot (\ln f)_{xy}) = 0. \] (26)
We suppose that
\[\partial^2_x^{-1}(D_x(\ln f)_{xx} \cdot (\ln f)_{xy}) = 0, \] (27)
then eq. (26) reduces to
\[(D_xD_x + D_yD_y)f \cdot f = 0. \] (28)
Now we suppose the solution of eq. (28) as
\[f(x,y,t) = e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1} \] (29)
where
\[\xi_i = a_i x + b_i y + c_i t, \quad i = 1, 2 \] (30)
and \(a_i, b_i, c_i \) and \(\delta_i \) are some constants to be determined later. Substituting eq. (29) into eq. (28) and eq. (27), and equating all coefficients of \(\exp(\xi_1), \exp(-\xi_1), \sin(\xi_2) \) and \(\cos(\xi_2) \) to zero, we get the following set of algebraic equations for \(a_i, b_i, c_i, \delta_i \), \(i = 1, 2 \)
\[b_2a_2^2 + c_1a_1 + a_1^3b_1 \]
\[a_2^3b_1 - 3a_1^2b_2a_2 - 3a_2a_1b_1 = 0, \]
\[a_2b_1 - 3a_1^2b_2a_2 + 3b_2a_2^2a_1 - c_1a_2 - c_2a_1 - a_1^3b_2 = 0, \]
\[4\delta_1^2a_2b_2 - 4\delta_1^2c_2a_2 + 4c_1a_1\delta_2 + 16a_1^3b_1\delta_2 = 0, \]
\[-4a_2^3b_2a_1 + 4b_1a_1^3a_2 + 4b_1a_1a_2^3 - 4a_1^4b_2 = 0, \]
\[-a_2^3b_1a_1 + a_1^2a_2^2 + a_1^4b_1 - a_2a_1b_1a_2 = 0. \] (31)
Solving the system of equations (31) with the aid of Maple, we obtain the following cases:

case 1:
\[b_1 = \frac{b_2a_1}{a_2}, \quad c_1 = -\frac{b_2a_1(-3a_2^2 + a_1^2)}{a_2}, \] (32)
\[c_2 = b_2a_2^2 - 3a_1^2b_2, \quad \delta_2 = -\frac{\delta_1^2a_2^2}{4a_1^2}, \]
for some arbitrary complex constants \(a_1, a_2, b_1 \) and \(\delta_1 \). Substitute eq. (32) into eq. (25) with eq. (29), we obtain the solution as
\[f(x,y,t) = e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_1} \]
and
\[u(x,y,t) = \frac{12}{a+b}(\frac{-a_1^2e^{-\xi_1} + \delta_1 \sin(\xi_2)a_2 + \delta_2 a_1e^{\xi_1}}{(a+b)(e^{-\xi_1} + \delta_1 \cosh(\xi_2) + \delta_2 e^{\xi_1})}) \] (33)
for
\[\xi_1 = a_1 x + \frac{b_2a_1}{a_2}y - \frac{b_2a_1(-3a_2^2 + a_1^2)t}{a_2}, \]
\[\xi_2 = a_2 x + b_2 y + (b_2a_2^2 - 3a_1^2b_2) t \]
\[\delta_2 = -\frac{\delta_1^2a_2^2}{4a_1^2}. \] (34)
If \(\delta_2 > 0 \), then we obtain the exact breather cross-kink solution
\[u(x,y,t) = \frac{-2a_1\sqrt{\delta_2} \sinh(\xi_1 - \theta) + \delta_1 \sin(\xi_2)a_2}{(a+b)(2\sqrt{\delta_2} \cosh(\xi_1 - \theta) + \delta_1 \cos(\xi_2))}. \]
for
\[\theta = \frac{1}{2} \ln(\delta_2). \]
If \(\delta_2 < 0 \), then we obtain the exact breather cross-kink solution
\[u(x, y, t) = 12 \frac{-2a_1 \sqrt{-\delta_2} \cosh(\xi_1 - \theta) + \delta_1 \sin(\xi_2) a_2}{(a+b)(2 \cosh(\xi_1 - \theta) + \delta_1 \cos(\xi_2))} \]
for
\[\theta = \frac{1}{2} \ln(-\delta_2). \]

case i:

\[a_1 = ia_2, b_1 = ib_2, c_1 = i (8b_2a_2^2 - c_2), \delta_2 = \frac{\delta_1^2}{4} \] (39)

for some arbitrary complex constants \(a_2, b_1, b_2, c_1, \delta_1, \delta_2 \). Substitute eq. (39) into eq. (25) with eq. (29), we obtain the solution as
\[f(x, y, t) = e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_2} \]
and
\[u(x, y, t) = 12 \frac{-ia_2 e^{-\xi_1} - \delta_1 \sin(\xi_2) a_2 + i\delta_2 a_2 e^{\xi_2}}{(a+b)(e^{-\xi_1} + \delta_1 \cos(\xi_2) + \delta_2 e^{\xi_2})} \] (40)
for
\[\xi_1 = i (a_2 x + b_2 y + 8b_2a_2^2t - c_2 t), \]
\[\xi_2 = a_2 x + b_2 y + c_2 t, \]
and
\[\delta_2 = \frac{\delta_1^2}{4}. \] (41)

We make the dependent variable transformation in equation (40) as follows
\[a_2 = i A_2, \]
\[b_2 = i B_2, \]
\[c_2 = i C_2, \]
where \(A_2, B_2 \) and \(C_2 \) are real. We obtain new form for equation (40) as
\[u(x, y, t) = 12 \frac{A_2 \left(-2\sqrt{\delta_2} \sinh(\xi_1^* - \theta) + i\delta_1 \sinh(\xi_2^*) \right)}{(a+b) \left(2 \sqrt{\delta_2} \cosh(\xi_1^* - \theta) + \delta_1 \cosh(\xi_2^*) \right)} \] (43)
for
\[\xi_1^* = -A_2 x + B_2 y + 8B_2A_2^2 t + C_2 t, \]
\[\xi_2^* = A_2 x + B_2 y + C_2 t, \]
If \(\delta_2 > 0 \) then we obtain the exact breather cross-kink solution
\[u(x, y, t) = 12 \frac{A_2 \left(-2\sqrt{\delta_2} \sinh(\xi_1^* - \beta) - i\delta_1 \sinh(\xi_2^*) \right)}{2 \sqrt{\delta_2} \cosh(\xi_1^* - \beta) + \delta_1 \cosh(\xi_2^*)} \] (44)
for
\[\beta = \frac{1}{2} \ln(\delta_2), \quad \delta_2 = \frac{\delta_1^2}{4}. \]
If \(\delta_2 < 0 \) then we obtain the exact breather cross-kink solution
\[u(x, y, t) = 12 \frac{A_2 \left(-2\sqrt{-\delta_2} \cosh(\xi_1^* - \beta) + i\delta_1 \cosh(\xi_2^*) \right)}{2 \sqrt{-\delta_2} \sinh(\xi_1^* - \beta) - \delta_1 \cos(\xi_2^*)} \] (45)
for
\[\theta = \frac{1}{2} \ln(-\delta_2), \quad \delta_2 = \frac{\delta_1^2}{4}. \]
IV. EXACT SOLUTION OF THE (2+1)-DIMENSIONAL CALOGERO-BOGOYAVLENSKII-SCHIFF (CBS) EQUATION

In this section, we investigate explicit formula of solutions of the following (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation

\[u_{xt} + 4u_xu_{xy} + 2u_{xx}u_y + u_{xxy} = 0, \quad (44) \]

using section IV, we have the following exact solutions:

Exact solution I:

If \(\delta_2 > 0 \), then we obtain the exact breather cross-kink solution

\[
\begin{align*}
u(x, y, t) &= 2 - 2a_1\sqrt{2}\sinh(\xi_1 - \theta) + \delta_1\sin(\xi_2) \frac{a_2}{2\sqrt{2}\cosh(\xi_1 - \theta) + \delta_1\cos(\xi_2)} \\
\theta &= \frac{1}{2}\ln(\delta_2).
\end{align*}
\]

For

\[
\begin{align*}
\xi_1 &= a_1 x + \frac{b_2a_1 y}{a_2}, \\
\xi_2 &= a_2 x + b_2 y + \left(b_2a_2^2 - 3a_1^2 b_2\right) t,
\end{align*}
\]

and

\[
\delta_2 = -\frac{\delta_1^2 a_2^2}{4a_1^2}.
\]

Exact solution II:

If \(\delta_2 < 0 \), then we obtain the exact breather cross-kink solution

\[
\begin{align*}
u(x, y, t) &= 2 - 2a_1\sqrt{2}\cosh(\xi_1 - \theta) + \delta_1\sin(\xi_2) \frac{a_2}{2\sqrt{2}\sinh(\xi_1 - \theta) + \delta_1\cos(\xi_2)} \\
\theta &= \frac{1}{2}\ln(\delta_2).
\end{align*}
\]

where

\[
\begin{align*}
\xi_1 &= a_1 x + \frac{b_2a_1 y}{a_2} - \frac{b_2a_1(-3a_2^2 + a_1^2)}{a_2} t, \\
\xi_2 &= a_2 x + b_2 y + \left(b_2a_2^2 - 3a_1^2 b_2\right) t
\end{align*}
\]

and

\[
\delta_2 = -\frac{\delta_1^2 a_2^2}{4a_1^2}.
\]

Exact solution III:

If \(\delta_2 > 0 \) then we obtain the exact breather cross-kink solution

\[
\begin{align*}
u(x, y, t) &= 2A_1 \left(2\sqrt{2}\sinh(\xi_1 - \beta) - \delta_1\sin(\xi_2)\right) \frac{a_2}{2\sqrt{2}\cosh(\xi_1 - \beta) + \delta_1\cosh(\xi_2)} \\
\beta &= \frac{1}{2}\ln(\delta_2), \\
\delta_2 &= \frac{\delta_1^2}{4}.
\end{align*}
\]

If \(\delta_2 < 0 \) then we obtain the exact breather cross-kink solution

\[
\begin{align*}
u(x, y, t) &= 2A_1 \left(2\sqrt{-2}\cosh(\xi_1 - \beta) - \delta_1\sin(\xi_2)\right) \frac{a_2}{2\sqrt{-2}\sinh(\xi_1 - \beta) + \delta_1\cosh(\xi_2)} \\
\beta &= \frac{1}{2}\ln(-\delta_2), \\
\delta_2 &= \frac{\delta_1^2}{4}.
\end{align*}
\]

\[
\xi_1 = -A_2 x - B_2 y + 8B_2A_2^2 t + C_2 t
\]

\[
\xi_2 = A_2 x + B_2 y + C_2 t.
\]

V. EXACT SOLUTION OF THE (2+1)-DIMENSIONAL BREAKING SOLITON EQUATION

In this section, we investigate explicit formula of solutions of the following (2+1)-dimensional Breaking soliton equation

\[u_{xt} - 4u_xu_{xy} - 2u_{xx}u_y + u_{xxy} = 0, \quad (47) \]

using section IV, we have the following exact solutions:

Exact solution I:

If \(\delta_2 > 0 \), then we obtain the exact breather cross-kink solution

\[
\begin{align*}
u(x, y, t) &= -2a_1\sqrt{2}\sinh(\xi_1 - \theta) + \delta_1\sin(\xi_2) \frac{a_2}{2\sqrt{2}\cosh(\xi_1 - \theta) + \delta_1\cos(\xi_2)} \\
\theta &= \frac{1}{2}\ln(\delta_2).
\end{align*}
\]

If \(\delta_2 < 0 \), then we obtain the exact breather cross-kink solution

\[
\begin{align*}
u(x, y, t) &= -2a_1\sqrt{-2}\cosh(\xi_1 - \theta) + \delta_1\sin(\xi_2) \frac{a_2}{2\sqrt{-2}\sinh(\xi_1 - \theta) + \delta_1\cosh(\xi_2)} \\
\theta &= \frac{1}{2}\ln(-\delta_2)
\end{align*}
\]

where

\[
\begin{align*}
\xi_1 &= a_1 x + \frac{b_2a_1 y}{a_2}, \\
\xi_2 &= a_2 x + b_2 y + \left(b_2a_2^2 - 3a_1^2 b_2\right) t
\end{align*}
\]

and

\[
\delta_2 = -\frac{\delta_1^2 a_2^2}{4a_1^2}.
\]
Exact solution II:
If $\delta_2 > 0$, then we obtain the exact breather cross-kink solution
\[
u(x, y, t) = -2A_2 \left(-2\sqrt{\delta_2} \sinh(\xi_1^* - \theta) + i\delta_1 \sin(\xi_2^*)\right) \left(2\sqrt{\delta_2} \cosh(\xi_1^* - \theta) + \delta_1 \cos(\xi_2^*)\right)
\]
for
\[
\theta = \frac{1}{2} \ln(\delta_2)
\]
If $\delta_2 < 0$, then we obtain the exact breather cross-kink solution
\[
u(x, y, t) = -2A_2 \left(-2\sqrt{-\delta_2} \cosh(\xi_1^* - \theta) + i\delta_1 \sin(\xi_2^*)\right) \left(2\sqrt{-\delta_2} \sinh(\xi_1^* - \theta) + \delta_1 \cos(\xi_2^*)\right)
\]
for
\[
\theta = \frac{1}{2} \ln(-\delta_2)
\]

Exact solution III:
If $\delta_2 > 0$ then we obtain the exact breather cross-kink solution
\[
u(x, y, t) = -2A_2 \left(2\sqrt{\delta_2} \sinh(\xi_1^* - \beta) - \delta_1 \sin(\xi_2^*)\right) \left(2\sqrt{\delta_2} \cosh(\xi_1^* - \beta) + \delta_1 \cos(\xi_2^*)\right)
\]
for
\[
\beta = \frac{1}{2} \ln(\delta_2) , \quad \delta_2 = \frac{\delta_1^2}{4}
\]
If $\delta_2 < 0$ then we obtain the exact breather cross-kink solution
\[
u(x, y, t) = -2A_2 \left(2\sqrt{-\delta_2} \cosh(\xi_1^* - \beta) - \delta_1 \sin(\xi_2^*)\right) \left(2\sqrt{-\delta_2} \sinh(\xi_1^* - \beta) + \delta_1 \cos(\xi_2^*)\right)
\]
for
\[
\theta = \frac{1}{2} \ln(-\delta_2) , \quad \delta_2 = \frac{\delta_1^2}{4}
\]
and
\[
\xi_1^* = -A_2x - B_2y + 8B_2A_2^2t + C_2t \\
\xi_2^* = A_2x + B_2y + C_2t.
\]

VI. Exact solution of the (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation
In this section, we investigate explicit formula of solutions of the following (2+1)-dimensional Bogoyavlenskii’s breaking soliton equation
\[
u_{xt} + 4u_xu_{xy} + 4u_xu_y + u_{xxy} = 0,
\]
using section IV, we have the following exact solutions:

Exact solution I:
If $\delta_2 > 0$, then we obtain the exact breather cross-kink solution
\[
u(x, y, t) = \frac{3}{2}2a_1\sqrt{\delta_2} \sinh(\xi_1^* - \theta) + \delta_1 \sin(\xi_2^*) - \frac{1}{2} \left(2\sqrt{\delta_2} \cosh(\xi_1^* - \theta) + \delta_1 \cos(\xi_2^*)\right)
\]
for
\[
\theta = \frac{1}{2} \ln(\delta_2).
\]
If $\delta_2 < 0$, then we obtain the exact breather cross-kink solution
\[
u(x, y, t) = \frac{3}{2}2a_1\sqrt{-\delta_2} \cosh(\xi_1^* - \theta) + \delta_1 \sin(\xi_2^*) - \frac{1}{2} \left(2\sqrt{-\delta_2} \sinh(\xi_1^* - \theta) + \delta_1 \cos(\xi_2^*)\right)
\]
for
\[
\theta = \frac{1}{2} \ln(-\delta_2).
\]
and
\[
\xi_1^* = a_1x + 2a_2y + b_b2a_2t, \quad \xi_2^* = a_1x + b_2y - (-a_1^2b_2 + b_2a_2^2)^t
\]
and
\[
\delta_2 = -\frac{\delta_1^2a_2^2}{8a_1^2}.
\]
Exact solution III:

If $\delta_2 > 0$ then we obtain the exact breather cross-kink solution

\[
 u(x, y, t) = \frac{3A_2}{2} \left(2\sqrt{2} \sinh(\xi_1 - \beta) - \delta_1 \sinh(\xi_2)\right) - \frac{\delta_2}{2} \left(2\sqrt{2} \cosh(\xi_1 - \beta) + \delta_1 \cosh(\xi_2)\right)
\]

for

\[
 \beta = \frac{1}{2} \ln(-\delta_2), \quad \delta_2 = \frac{\delta_1^2}{4}.
\]

If $\delta_2 < 0$ then we obtain the exact breather-cross-kink solution

\[
 u(x, y, t) = \frac{3A_2}{2} \left(2\sqrt{2} \cosh(\xi_1 - \beta) - \delta_1 \sinh(\xi_2)\right)
\]

for

\[
 \theta = \frac{1}{2} \ln(-\delta_2), \quad \delta_2 = \frac{\delta_1^2}{4},
\]

and

\[
 \xi_1 = -A_2 x + b_1 y + (4A_2^2 B_2 + C_2 - 4A_2^2 b_1) t,
\]

\[
 \xi_2 = -A_2 x + B_2 y + C_2 t.
\]

VII. CONCLUSIONS

In this paper, using the EHTA we obtained some explicit formulas of solutions for the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation in some special cases of its parameters. EHTA with the aid of a symbolic computation like Maple or Mathematica is an easy and straightforward method which can be applied to other nonlinear partial differential equations. It must be noted that, all obtained solutions have checked in the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equations. All solutions satisfy in the equations.

REFERENCES

International Scholarly and Scientific Research & Innovation 4(1) 2010 93 scholar.waset.org/1999.7/13986