Abstract—This paper presents a vertical silicon nanowire n-MOSFET integrated with a CMOS-compatible fully-silicided (FUSI) NiSi$_2$ gate. Devices with nanowire diameter of 50nm show good electrical performance (SS < 70mV/dec, DIBL < 30mV/V, Ion/Ioff > 107). Most significantly, threshold voltage tunability of about 0.2V is shown. Although threshold voltage remains low for the 50nm diameter device, it is expected to become more positive as nanowire diameter reduces.

Keywords—NiSi$_2$ fully-silicided (FUSI) gate, vertical silicon nanowire (SiNW), CMOS compatible.

I. INTRODUCTION

The Si nanowire (SiNW) MOSFET with gate-all-around (GAA) architecture shows promise in pushing the device scaling limits further [1-6]. The small nanowire diameter and excellent gate electrostatic control results in volume inversion of the channel, thus reducing short-channel effects, a big problem in scaling. However, as with many novel device architectures, the SiNW MOSFET has problems of its own. One major problem facing nanowire MOSFETS with SiO$_2$/Poly-Si gate stack is the lower than desired threshold voltage, V_T [2-4, 6]. Channel doping to correct the threshold voltage, V_T is difficult, given the narrow cylindrical nanowire. Carrier mobility is also impacted with higher channel doping. Gate work function tuning would thus make a better solution.

The CMOS-compatible fully-silicided (FUSI) gate process has been investigated to adjust the gate work function and thus the device V_T [6-11]. The gate work function and V_T were found to be easily tuneable through gate doping. In addition, the FUSI gate reduces the poly-Si gate depletion and resistance, enhancing device performance. NiSi FUSI gates have shown added advantage over other FUSI gate materials like TiSi$_2$ and CoSi$_2$ due to its lower anneal temperature, near-mid-gap work function, lower consumption of Si and ability to fully dope the substrate and bottom of the nanowire (Fig. 1b).

II. DEVICE FABRICATION

Three different gate splits were fabricated for comparison: (1) Phosphorous implanted poly-Si gate (poly-gate); (2) Unimplanted FUSI gate (FUSI gate); (3) Phosphorous implanted FUSI gate (tuned FUSI gate).

After nitride hard mask definition on p-type bulk-Si wafers (Fig. 1a), Si was etched, followed by sacrificial oxidation and grown oxide removal to form vertical SiNWs.

Vertical arsenic implantation and activation was done to dope the substrate and bottom of the nanowire (Fig. 1b). Isolation oxide was then formed by non-conformal deposition and DHF etch-back of HDP oxide (Fig. 1c). Gate stack of grown oxide (4.5nm) and a-Si (50nm) was then formed (Fig. 1d) and the a-Si was implanted and annealed with phosphorous from four orthogonal directions at a 30° tilt for the poly-gate and tuned FUSI gate devices. Another layer of isolation oxide was formed (Fig. 1e), exposing the poly-Si tip to be etched using RIE. The now exposed tip was implanted with arsenic from four orthogonal directions at a tilt of 45° (Fig. 1f). A layer of oxide is used to prevent the gate from being implanted.

A nitride spacer was formed to protect the nanowire tip to allow isolation oxide on the poly-Si to be stripped in DHF (Fig. 1g). After a gate pattern transfer (Fig. 1h) and a pre-clean, 30nm Ni was sputtered using PVD for FUSI gate and tuned FUSI gate devices (Fig. 1i). A single-step RTP anneal (440°C, 30s) was used to form the Ni-FUSI gate and un-reacted Ni removed in H$_2$SO$_4$:H$_2$O$_2$:H$_2$O solution (Fig. 1j). Finally, a low temperature (~400°C) back-end PMD and metallization process using Al was used to complete the fabrication (Fig. 1k).

A cross-sectional TEM image of a FUSI gate device is shown in Fig. 2. EDX done on the gate showed a Ni:Si ratio of 1:2. This is likely caused by a thinner PVD Ni layer deposited on the sidewalls of the gate creating a Ni-deficient NiSi$_2$ during silicidation. Other phases of Ni-FUSI gate can be formed by adjusting the Ni thickness and/or silicidation temperature.

III. RESULTS AND DISCUSSION

The I_d-V_g curves of the vertical SiNW nMOSFETs are shown in Fig. 3a. The devices possess good characteristics of SS < 70mV/dec, DIBL < 30mV/V, and I_{on}/I_{off} > 107, but also has a low I_{on} (~300 μA/μm). This is due to the last implant not fully doping the nanowire under the hard mask, resulting in
high contact resistance. This can be rectified by fine tuning the implant conditions.

The devices also show V_T shifts relative to each other as can be seen in Fig. 3b. Most significantly, the FUSI gate has tuned the V_T by about +0.3V, resulting in a low positive V_T. Through the use of a FUSI gate, the V_T can also be adjusted within a 0.2V range. However, the FUSI process does induce some variations, especially for the tuned FUSI gate ($\sigma=0.6$). This could be due to small, unsilicided pockets of poly-Si at the oxide interface, which more likely to be present in doped gates where silicidation is slower.

As mentioned above, the FUSI gate increases V_T relative to the poly-gate device, but results in a V_T that is still low, leading to high I_{on}. However, as Fig. 3c shows, V_T increases with a decrease in nanowire diameter. So as nanowire diameter scales to sub-50nm, V_T will reach an ideal V_T without the need for gate implantation. But as diameter scales further, gate implantation would be required to correctly tune the now higher V_T.

IV. CONCLUSION

The NiSi$_2$ FUSI gate vertical SiNW nMOSFET has been presented, exhibiting good performance and proper V_T tuning via gate implantation. The device could give ideal V_T below 50nm diameter without any gate implantation but may require some tuning as diameter scales further.
ACKNOWLEDGMENT

The authors would like to thank all the staff of IME Fab for their invaluable help in wafer processing.

REFERENCES