Effects of Dry Period Length on, Milk Production and Composition, Blood Metabolites and Complete Blood Count in Subsequent Lactation of Holstein Dairy Cows

Akbar Soleimani, Alireza Heravi Moussavi, Mohsen Danesh Mesgaran, Abolqasem Golian

Abstract—Twenty - nine Holstein cows were used to evaluate the effects of different dry period (DP) lengths on milk yield and composition, some blood metabolites, and complete blood count (CBC). Cows were assigned to one of 2 treatments: 1) 60-d dry period, 2) 35-d DP. Milk yield, from calving to 60 days, was not different for cows on the treatments (p=0.130). Cows in the 35-d DP produced more milk protein and SNF compared with cows in treatment 1 (p ≤ 0.05). Serum glucose, non-esterified fatty acids (NEFA), beta hydroxy butyrate acid (BHBA), blood urea nitrogen (BUN), urea, and glutamic oxaloacetic transaminase (GOT) were all similar among the treatments. Body condition score (BCS), body weight (BW), complete blood count (CBC) and health problems were similar between the treatments. The results of this study demonstrated we can reduce the dry period length to 35 days with no problems.

Keywords—complete blood count, dairy cows, dry period, milk yield

I. INTRODUCTION

VARYING the length of the dry period for dairy cows has been an active area of research investigation and field application for the past several years. Assuming that there are no detrimental effects on production or health during the subsequent lactation, the benefits of shortening the dry period for high-producing cows are obvious. Therefore, recently, there has been an interest in shortening the non-income-producing dry period. If the dry period can be reduced sufficiently, the need for a “far-off” dry cow group may be eliminated [13]. This can reduce over-crowding of dry cow facilities that is common on farms.

On many farms, shortening of dry period can eliminate the need to transfer far-off cows to a second farm and hence the cow stress and inconvenience associated with such moves. The traditional dry cow program involves two diet changes within a three-week period. One change occurs when the cow is moved to a “close-up” pen and another occurs when the cow begins lactation. If the dry period could be shortened, it may be possible to feed a more uniform diet throughout the lactation-gestation cycle [12].

II. MATERIAL AND METHODS

A. Cows, Treatment and Experimental Design

Holstein cows (n = 29) were randomly assigned in 1 of 2 treatments: 1) traditional 60 d dry period (n=14), 2) 35-d dry period (n=15). Holstein cows were blocked by parity (2nd and 3rd to 5th), their previous 305-day milk yield and expected calving dates. All cows were fed by routine ration of farm (total mixed diet) twice a day at 0800 and 1400 h and had at all times free access to water. Cows were housed in stalls during the entire DP and lactation. The Ferdowsi University of Mashhad and Department of Animal Science Animal Care and
Use Committees approved all procedures involving experimental cows.

B. Body Condition Scoring and Body Weight

Body condition score and body weight was recorded every week from entering to experiment to 60 days after parturition. The same assessor assigned BCS to each cow using a 5-point scale (1 = thin to 5 = fat) [9] with 0.25-unit increments.

C. Milk Sampling

Cows were milked 3 times per day at 0100, 0900 and 1700 h and yields were recorded. Milk samples were collected from each milking on 1 d per wk and composited for milk composition (Micro Scan; FOSS Electric A/s, Denmark).

D. Blood Sampling

Using vacutainer tubes, blood samples were collected weekly from entering to experiment to 60 days after calving via venipuncture of coccygeal vessels before the morning feeding to monitor serum metabolites. Serum was separated after collection by centrifugation (15 min at 3,000×g) and stored at -20°C until analysis for metabolites. Also to monitor blood counts (CBC), about 1.5ml from the blood samples poured in vacutainer tubes with EDTA. These samples were kept in room temperature until analyzing for CBC. Complete blood counts were automatically determined with a hematology analyzer (Symex K 1000, TOA Ltd., Tokyo, Japan).

E. Statistical Analyses

Milk yield and composition, BW, BCS and blood metabolites were analyzed by using a mixed model (PROC MIXED, SAS Inst. Inc., Cary, NC)[26] for a completely randomized design with repeated measures using the following model:

$$Y = \mu + Ti + A(i)j + Dk + (T \times D)ik + Rijk$$

Where,

- Y = Dependent variable.
- μ = Overall mean.
- T = Treatment effects.
- D = Effects of sampling day or time.
- A = Random effects of animal within treatments.
- R = Residual error associated with the ijk observation

III. RESULTS AND DISCUSSION

A. Milk yield and Composition

The effects of treatment on milk yield and milk composition are shown in Table I. There were no differences in postpartum milk yield between treatments (p=0.130).

<table>
<thead>
<tr>
<th>Dry Periods (Day)</th>
<th>SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk yield</td>
<td>36.48</td>
<td>34.90</td>
</tr>
<tr>
<td>Milk fat, %</td>
<td>3.89</td>
<td>3.84</td>
</tr>
<tr>
<td>Milk Protein, %</td>
<td>3.05a</td>
<td>3.16b</td>
</tr>
<tr>
<td>Milk lactose, %</td>
<td>4.56a</td>
<td>4.71b</td>
</tr>
<tr>
<td>Milk SNF, %</td>
<td>8.36a</td>
<td>8.63b</td>
</tr>
<tr>
<td>Fat yield, kg</td>
<td>1.39</td>
<td>1.17</td>
</tr>
<tr>
<td>Protein yield, kg</td>
<td>1.11</td>
<td>0.94</td>
</tr>
<tr>
<td>Lactose yield, kg</td>
<td>1.66</td>
<td>1.40</td>
</tr>
<tr>
<td>SNF yield, kg</td>
<td>3.05</td>
<td>2.58</td>
</tr>
</tbody>
</table>

1 to 60 Days in milk

Based on these data and milk production data from our experiment and that of others [32]-[30]-[25], a DP (at least 35 d) is necessary to achieve maximal milk production in the subsequent lactation.
There was a tendency (P = 0.01) for increased milk protein percentage postpartum for cows on the shortened DP=to 35-d compared with cows on the traditional dry period=60d.

However, there were no differences in milk protein yield between treatments. Our data are in agreement with [24]; some researchers believe that there is an inverse relationship between milk protein percentage and milk yield response when altering DP length [13] and also [25] believe that an increase in milk protein percent may be the result of reduced milk yield, improving energy balance and thereby sparing amino acids and energy for protein synthesis.

References [33] and [15] did not report any significant differences between milk protein percentage on 30d dry period and 60d dry period. However, reference [31] reported that milk protein yield was increased when cows were given a traditional DP compared with a shortened dry period (calculated milk protein percentage was 3.4 and 3.5%, respectively).

Milk lactose percentage and milk SNF percentage was greater for cows on the shortened dry period= 35d compared with cows on the dry period =60d (p=0.05 and 0.04, respectively), but no differences in SNF yield, milk fat percentage and yield, milk lactose yield for cows on the treatments. References [19]-[15]-[33] and [22] also reported no difference in milk fat percentage and milk fat yield in the subsequent lactation for cows with 35-d and 60-d DP.

Also, references [31] and [23] reported a decrease in milk fat yield in the subsequent lactation for cows with a 4-wk DP compared with a 7-wk DP. Our data about milk lactose percentage is not in consistent with [7] and [20] that showed no significant difference between treatments about milk lactose percentage, of course they compared 7-wk or 8-wk dry period with no planned dry periods.

B. Body Weight and BCS changes

Metabolic disorders have been associated with BW or BCS loss. As might be expected, in experiments in which eliminating [32]-[25] or shortening [10] the DP reduced milk production in the subsequent lactation, BW losses were concurrently reduced.

However, based on our data, during the entire course of the study (prepartum and postpartum), cows BW and BCS changes were not affected by treatments (Table II).

The effect of week in body weight (p≤0.001) and body condition score (p ≤ 0.05) at postpartum was significant between treatments.

Decreased postcalving body condition score demonstrated that cows experienced negative energy balance.

Unsimilar to our data, reduction in BCS loss after parturition by giving short dry periods is reported by others [32]-[10]-[15].

References [24] and [14] demonstrated that BCS at calving was similar among experimental groups (28-d vs. 56-d and 30-d vs. 70-d dry periods, respectively), but [24] found that postcalving BCS loss for the 56-d dry period group was greater than that of 28-d dry period group.

So our data explained that there is no difference between treatments about negative energy balance.

C. Serum Metabolites

Serum metabolites are presented in Table III. Although numerically higher concentrations of NEFA were found in cows in 60-d dry period compared with the 35-d dry periods, there was no difference between treatments in postpartum serum NEFA concentration (p=0.58); this data is consistent with [19] that reported concentrations of NEFA were similar between cows with 30-d and 60-d dry period. Reference [24] also, reported that postpartum plasma NEFA concentration did not differ when the dry period was reduced from 56 to 28 d. The effect of week in NEFA concentration at postpartum was significant between treatments (P < 0.001).

Our data about postpartum serum NEFA concentrations are in opposite with [34] that reported postpartum NEFA concentrations were lower for cows assigned to shortened 34-d dry period compared with 55-d DP.

Also, references [7] and [1] showed that postpartum NEFA concentrations significantly higher in cows with 7 or 8 week dry period than no planned dry period (p=0.02).

During the periparturient period, cows undergo dramatic physiological changes associated with parturition and the initiation of lactation and experience numerous changes in feeding and management [13].
Serum NEFA concentration is an indicator of fat mobilization [35]-[17]-[27]. The higher NEFA concentration reflects a higher rate of lipolysis in the adipose tissue [21]. The NEFA are potential substrates for ketogenesis in the liver [16].

TABLE III
LEAST SQUARE MEANS OF NEFA*, BHBA*, GLUCOSE, BUN*, UREA AND GOT⁴

<table>
<thead>
<tr>
<th>Dry Periods (Day)</th>
<th>SEM ⁵</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Period</td>
<td>Week</td>
</tr>
<tr>
<td>NEFA (mmol/L) ⁶</td>
<td>0.793</td>
<td>0.743</td>
</tr>
<tr>
<td>BHBA (mmol/L) ⁶</td>
<td>0.726</td>
<td>0.740</td>
</tr>
<tr>
<td>Glucose (mg/dL) ⁶</td>
<td>54.34</td>
<td>56.95</td>
</tr>
<tr>
<td>BUN (mg/dL) ⁶</td>
<td>14.928</td>
<td>13.833</td>
</tr>
<tr>
<td>Urea (mg/dL) ⁶</td>
<td>31.947</td>
<td>29.603</td>
</tr>
<tr>
<td>GOT (U/I) ⁶</td>
<td>87.629</td>
<td>82.028</td>
</tr>
</tbody>
</table>

¹ NEFA = Non-Esterified Fatty Acid EM ⁴ GOT = Glutamic oxaloacetic transaminase
² BHBA = Beta Hydroxy Butyrate Acid ⁵ SEM = Standard Error of Mean
³ BUN = Blood Urea Nitrogen ⁶ Postpartum = from 1 wk to 7 wk
⁷ wk = Week relative to calving

These data suggested that cows with a 7 or 8-week dry period were in a greater negative energy balance in the early postpartum period, most likely due to higher milk yields. But in our study, we showed milk yields and NEFA concentrations have no different between treatments.

Postpartum serum BHBA concentrations like NEFA were similar between treatments (p=0.92). The effect of week in BHBA concentrations at postpartum was significant between treatments (P= 0.008). Reference [24] also reported that there are no treatment effects on postpartum plasma BHBA. Reference [7] compared standard 8 week for dry period and no planned dry period and reported that there were no differences in plasma BHBA concentrations between the dry period treatments from week 1 to 7 wk and from week 4 to 12 relative parturition.

Reference [20] reported that the same results about plasma BHBA concentrations when cows assigned in 7-week dry period and no planned dry period treatments.

However, reference [1] reported that the significant difference between treatments (7-wk dry period vs. no planned dry period) about postpartum plasma BHBA concentrations (p=0.04).

There were no prepartum and postpartum differences in serum glucose concentrations for cows in treatments (p=0.37 and p=0.49, respectively).

Nevertheless, the effect of week in serum glucose concentrations was significant (p <0.001) at prepartum and postpartum (p=0.001) between treatments.

Our data are in agreement with the observations [22] who reported no difference in prepartum and postpartum serum glucose between 56-d, 42-d and 35-d dry period lengths. Reference [24] also showed no difference in prepartum serum glucose between 28-d and 56-d dry period lengths.

We also observed no differences in postpartum BUN, urea and GOT concentrations between treatments. Reference [1] reported no difference in prepartum and postpartum plasma urea nitrogen between treatments (49-d vs. omission of the dry period).

D. Complete Blood Count and Immunology Responses

Effect of dry period lengths on complete blood count are summarized in Table IV.

Dry period lengths have no effect on complete blood count and immunology factors. There is no research on effect of dry period lengths on immune system.

The high incidence of health problems during the transition period contributes to the variation in DMI, milk yield, and responses to imposed treatments [8].

However, our data showed that imposed treatments in this study (dry period lengths) had no effect on health problems and metabolic disorders.
The effect of week was significant between treatments for Red Blood Cells (p = 0.001), Hemoglobin, Hematocrit and platelets (p < 0.001).

IV. CONCLUSION

The results indicate that shortening the dry period from 60 to 35 d does not have appreciable effects on milk production. However, reducing targeted dry period length to 35-d increased milk SNF and milk protein and lactose percentage. In addition shortening DP length to 35 d had no negative influences on BW, BCS, some serum metabolites, complete blood count and finally immune system. However, follow-up research should be done to study the effect of short dry periods on long-term health and longevity in the herd.

ACKNOWLEDGMENTS

The authors gratefully acknowledge to the managers of Moghoofat Malek dairy farm for providing the opportunity to carry out this experiment in the farm and also the farm personnel for their assistance in this experiment and excellent care of the cows.

REFERENCES

<table>
<thead>
<tr>
<th>Dry Periods (Day)</th>
<th>SEM</th>
<th>Dry Period</th>
<th>Week</th>
<th>Dry Period × Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td>12277</td>
<td>13468</td>
<td>1991.31</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>2528037</td>
<td>5363237</td>
<td>102438</td>
</tr>
<tr>
<td></td>
<td></td>
<td>252571</td>
<td>286354</td>
<td>16517.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.08</td>
<td>8.11</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.97</td>
<td>2.84</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250271</td>
<td>286354</td>
<td>16517.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7703.88</td>
<td>8920.23</td>
<td>1578.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.61</td>
<td>716.54</td>
<td>98.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>173.77</td>
<td>152.77</td>
<td>22.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13468</td>
<td>13468</td>
<td>1991.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>286354</td>
<td>286354</td>
<td>16517.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98.57</td>
<td>98.57</td>
<td>1578.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.68</td>
<td>22.68</td>
<td>98.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1548.58</td>
<td>1548.58</td>
<td>98.57</td>
</tr>
</tbody>
</table>

1 from -1 wk to 7 wk relative to calving
2 WBC = White Blood Cell
3 RBC = Red Blood Cell
4 HGB = Hemoglobin
5 HCT = Hematocrit
6 PLT = Platelet

