Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier

Marzuki Khalid, Ruihyah Yusof and Anis Salwa Mohd Khairuddin

Abstract—An automated wood recognition system is designed to classify tropical wood species. The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists of K-means clustering and kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and K-Nearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier. The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.

Keywords—Tropical wood species, nonlinear data, feature extractors, classification

I. INTRODUCTION

TROPICAL countries are blessed with abundance of wood supply. Together they made up approximately 33% of the world’s timber industry in year 2010 [1]. With more demands and more tightly controlled international requirements, many of these countries are required to meet tighter analysis requirements as well as higher technical demands such as more accurate recognition of the correct species, prevention of fraud, and Environmental Investigation Agency (EIA) requirements, to name a few. In many timber industries one of the major problems is to find good wood graders. Currently, very few certified officers are involved in the traditional wood identification process. The process of training up experienced officers in performing the job is difficult since the job is no longer considered lucrative and rather laborious. Moreover, the possibility of biasness and mistakes in human recognition system has to be considered. Besides that, it is impractical and cost effective for a human to analyze and identify large amount of timber species. Hence automatic wood species recognition system is needed to overcome the errors caused by traditional wood identification system which based solely on human expertise. Khalid et. al [2] has developed an automatic Tropical Wood Species Recognition System using macroscopic features of timber based on image processing. In the work, the surface texture of timber is captured, and the features are extracted from the images using Grey Level Co-occurrence Matrix (GLCM) and back propagation Neural Network (BPNN) is used to train and classify the timber species. Yusof et. al [3] adopted fusion of two feature sets using multi feature extractor technique. Two feature extraction methods were used in this system: co-occurrence matrix approach (GLCM) and Gabor filters. These two extraction methods produced more variation of features and also improved the accuracy rate of the system. K. Wang et.al [4] proposed a wood surface texture recognition method based on feature level data fusion which uses three types of texture analysis methods. The three texture analysis methods used are gray co-occurrence matrix (GLCM), Gauss-Markov random field (GMRF) and wavelet multi-resolution fractal dimension. The fusion method is based on Simulated Annealing Algorithm with memory. In a later development, Khairuddin et.al [5] used feature selection based on genetic algorithm to improve the accuracy of wood species recognition, in particular to reduce the redundant features which are not considered as discriminatory enough for accurate classification.

Wood samples of the same species might have different colour, tones, density and size of pores. Some of the wood samples also filled with dust, dammar or deposit. This is because some of the wood samples were taken from different part of the same tree or from different trees of the same species. Size of pores of certain trees changes through years. Sometimes the growth location of the tree affects the size of pores. Due to the large variations of features within inter and intra among the species of the tropical wood, and the problems relating to variations in the wood samples, there is a pressing need to improve the methodology of the wood recognition system. The conventional method of using the feature extraction followed by classification in the recognition of wood species is no longer adequate for a larger sample of wood species. Therefore, in this paper, we proposed a two stage classification for the wood recognition system. The first stage is called the pre classification stage that utilizes K-mean clustering as database management and KDA/GSVD as nonlinear dimension reduction technique in order to enhance
the class-discriminatory information. Finally, at the final classification stage, we applied k-NN and LDA classifier to classify the wood species. The experimental results presented in section 3 shows that the implementation of clustering and dimension reduction improves the classification accuracy of the system.

This paper is organized as follows: in Section II, we presented the methodology of the proposed system. In Section III, experimental results are discussed followed by brief conclusion in Section IV.

II. PROPOSED METHODOLOGIES

The methodology of the proposed system consists of image acquisition, image pre-processing, feature extraction, clustering and dimension reduction in the preclassification stage and the final classification. Fig. 1 shows the overview of the proposed system.

A. Image Acquisition

The wood samples for this research are obtained from the Forest Research Institute of Malaysia (FRIM). There are 52 wood species in cubic form (approximately 1 inch by 1 inch in size) where 5 cubes are provided for each species. The images of the wood surface are captured by using a specially designed portable camera with 10 times magnification. The size of the each image is 768x576 pixels. In total, there are 100 images taken from each wood species where 70 images are for training and the other 30 images are for testing. Table I as shown below lists out the wood species included in the system’s database.

<table>
<thead>
<tr>
<th>No.</th>
<th>Scientific Name</th>
<th>In the Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Shorealaevis</td>
<td>27. Dialumplatysepalum</td>
</tr>
<tr>
<td>2.</td>
<td>Shoreamaxwelliana</td>
<td>28. Dipterocarpspp</td>
</tr>
<tr>
<td>3.</td>
<td>Shoreaxelliptica</td>
<td>29. Dipterocarpscrinutis</td>
</tr>
<tr>
<td>4.</td>
<td>Calophyllumkunstleri</td>
<td>30. Dipterocarpusbauddi</td>
</tr>
<tr>
<td>5.</td>
<td>Calophyllum</td>
<td>31. Dipterocarpus hasseltii</td>
</tr>
<tr>
<td>6.</td>
<td>Calophyllum flavo-ramulum</td>
<td>32. Scorodocarpus borneensis</td>
</tr>
<tr>
<td>7.</td>
<td>Calophyllum borneensis</td>
<td>33. M quadridifa</td>
</tr>
<tr>
<td>8.</td>
<td>Palauquiumstellatum</td>
<td>34. M microphylla</td>
</tr>
<tr>
<td>9.</td>
<td>Neobalanocarpasheimii</td>
<td>35. M caesia</td>
</tr>
<tr>
<td>10.</td>
<td>Duriospp</td>
<td>36. M foetida</td>
</tr>
<tr>
<td>11.</td>
<td>Parashoreaglobosa</td>
<td>37. Kokoonasessilis</td>
</tr>
<tr>
<td>12.</td>
<td>Parashoreastellata</td>
<td>38. Kokoonareflexa</td>
</tr>
<tr>
<td>15.</td>
<td>Hopeaeferrea</td>
<td>41. Sp of lauraceae</td>
</tr>
<tr>
<td>16.</td>
<td>Hopeaapidulata</td>
<td>42. Pentaceadenophora</td>
</tr>
<tr>
<td>17.</td>
<td>Hopeaipunctata</td>
<td>43. Pentacecurtissi</td>
</tr>
<tr>
<td>18.</td>
<td>Dyeracostulata</td>
<td>44. Pentace floribunda</td>
</tr>
<tr>
<td>19.</td>
<td>Dryobalanopsaromatica</td>
<td>45. Shoreauluginosa</td>
</tr>
<tr>
<td>20.</td>
<td>Dryobalanopsoblongifolia</td>
<td>46. Lophopetalump</td>
</tr>
<tr>
<td>21.</td>
<td>Pometiaridleyi</td>
<td>47. Lophopetalum beccarianum</td>
</tr>
<tr>
<td>22.</td>
<td>Dryobalanopsoblongifolia</td>
<td>48. Lophopetalum floribundum</td>
</tr>
<tr>
<td>23.</td>
<td>Artocarpsdadah</td>
<td>49. Shoreaguio</td>
</tr>
<tr>
<td>24.</td>
<td>Artocarpslanceifolia</td>
<td>50. Shoreacolina</td>
</tr>
<tr>
<td>25.</td>
<td>Artocarpskemando</td>
<td>51. Heveabrazililensis</td>
</tr>
<tr>
<td>26.</td>
<td>Pometiaridleyi</td>
<td>52. Endospermumdiadenum</td>
</tr>
</tbody>
</table>

B. Image Pre-Processing

The wood images are pre-processed using homomorphic filters in order to enhance the image presentation. Homomorphic filtering sharpens features and flattens lighting variations in an image. Hence, illumination and reflectance on the image can be removed. Fig. 2 as shown below are the images of wood species ‘Shorealaevis’. The homomorphic image is obtained by performing homomorphic filtering on the original image.

Fig. 1 Overview of the proposed system
C. Feature Extraction

In this paper, we use the same features that have been used by Khairuddin et al. [5]. In their work, the wood features were extracted based on the fusion of Basic Grey Level Aura Matrix (BGLAM) & Statistical Properties of Pores Distribution (SPPD). The total number of features extracted from each wood sample is 157 features (136 features from BGLAM and 21 features from SPPD).

An image can be uniquely represented by its BGLAMs. BGLAM technique is applied on the homomorphic image of wood since the BGLAMs of an image characterize the co-occurrence probability distributions of gray levels at all possible displacements configurations. It is proven that BGLAMs can give the necessary and sufficient information to differentiate between images. In addition, BGLAM features are directly calculated from the images, thus, providing a more accurate representation of an image. The framework of BGLAM feature extractor is explained in detail in [6].

D. Pre-Classification Stage

Pre-classification stage includes clustering using k-means clustering technique and nonlinear dimension reduction using the KDA technique. The goal of pre-classification stage is to enhance the class-discriminatory information in a lower-dimensional space.

Clustering

Based on the features extracted from each wood sample, the wood database is clustered into 16 clusters using k-means clustering. The number of cluster is chosen based on results presented in Fig. 5 and Fig. 6 in Section III. Each cluster will have its own wood database and classification stage.

Given a set of training wood samples \(n \) \((x_1, x_2, ..., x_n)\), where \(n \) represents the number of training wood samples in the database. Each wood sample, \(x \) is a real vector of wood features where \(x = (x_1, ..., x_{157}) \) since there are 157 features extracted from each wood sample. K-means clustering aims to partition \(n \) wood samples into \(k \) clusters \((k \leq n)\).

\[
S = \{S_1, S_2, ..., S_k\}
\]

so as to minimize the within-cluster sum of squares as in (1):

\[
\arg\min_{S_1, ..., S_k} \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2
\]

(2)

where \(\mu_i \) is the mean of points in \(S_i \).
The algorithm of the k-means clustering is shown below [15]:

1) Determine number of cluster, k.
2) Determine initial set of k means μ_1, \ldots, μ_k as cluster centers using random permutation.
3) Assign each wood sample to the nearest cluster center based on minimum-distance classifier. That is, we can say that x_i is in cluster k if $\|x_i - \mu_k\| = \min\{\|x_i - \mu_k\|, \ldots, \|x_i - \mu_k\|\}$ is the minimum of all the i distances based on (2).

$$S_i = \{x_i: \|x_i - \mu_k\| \leq \|x_i - \mu_k\|\}$$

for all $i = 1, \ldots, k$.
4) Based on the clustering results from Step 3, we will update the cluster centers, μ_k, by calculating new means to be the centroid of the wood samples in the cluster i. Where x_i represents the wood samples belong to cluster i. The centroid is updated based on (4).

$$\mu_k = \frac{1}{|S_k|} \sum_{x_i \in S_k} x_i$$

5) Repeat Steps 3 and 4 until the centroid for every clusters no longer move which means convergence has been reached.

There are various techniques that can be implemented to determine cluster validity where the main goal is to search for clustering that is well separated [10]. Since the k-means clustering aims to minimize the sum of squared distances from all points to their cluster centers, this should result in compact clusters. The sum of the squared error (SSE) is used to measure the quality of clustering. We prefer the one with the smallest SSE since this means that the centers of this clustering are a better representation of the points in their cluster. The values of SSE for different number of clusters are shown in Fig.5. The SSE is formally defined as:

$$SSE = \sum_{i=1}^{k} \sum_{x \in C_i} \text{dist}(c_i, x)^2$$

where C_i is the i^{th} cluster, c_i is the center of cluster C_i, dist is the standard Euclidean distance between two objects in Euclidean space, and x is a point in C_i.

Nonlinear dimension reduction using KDA

Linear feature extraction methods have been widely used to remove redundant features and to speed up data processing. A linear feature extraction method cannot prevent the loss of class separability during dimension reduction. This limitation can be observed in classes that have nonlinear decision boundaries. Various nonlinear feature extraction methods based on kernel tricks have been implemented to overcome the limitations associated with linear feature extraction [11,12,13,14].

Fig.4 shows the nonlinear distribution of wood species where each symbol represents different type of wood species. The scatter plot of wood training database is highly nonlinear and complex due to variation in viewpoint, illumination, and texture features within inter and intra among the species as mentioned in the introduction part. Hence kernel-based method which is known as kernel discriminant analysis (KDA) has been applied to deal with nonlinearity of the wood patterns’ distribution. In KDA, Radial basis function (RBF) kernel function was employed into LDA to handle nonlinearity in a computationally attractive manner. However, due to the nonlinear map by the kernel function, the dimension of the feature space often becomes much larger than that of the original data space, and as a result, the scatter matrices become singular, which is referred to as “small sample size” (SSS) problem. Hence, KDA has been proposed, which is a generalization of LDA based on the generalized singular value decomposition (GSVD). It overcomes the SSS problem.

![Fig. 4 Scatter plot of 5 wood species intraining databasefor Cluster 1 with nonlinear boundaries](image)

The main idea of the kernel method is that without knowing the nonlinear feature mapping or the mapped feature space explicitly, we can work on the feature space through kernel functions, as long as the problem formulation depends only on the inner products between data points. This is based on the fact that for any kernel function k satisfying Mercer’s condition, there exists a mapping ϕ such that,

$$\langle \phi(x), \phi(y) \rangle = k(x,y)$$

where \langle , \rangle is an inner product in the feature space transformed by ϕ.

We apply the kernel method to perform LDA in the feature space instead of the original input space. Given a kernel function k, let ϕ be a mapping satisfying (6) and define $F \subset \mathbb{R}^N$ to be the feature space from the mapping ϕ. A Gaussian is used as the RBF kernel based on (7).

$$k(A,B) = K_{\text{rbf}}(A,B) = \exp\left(\frac{-d^2(A,B)}{\sigma^2}\right)$$

where $\sigma \in \mathbb{R}$.
The RBF kernel returns an RBF kernel matrix from the input coordinates. The inputs of the RBF kernel are a matrix containing all wood features and the kernel width. The output of the kernel is dependent on the Euclidean distance of \(B \) from \(A \) (one of these will be the support vector and the other will be the testing data point). The support vector will be the center of the RBF and \(\sigma \) will determine the area of influence this support vector has over the data space.

The algorithm of KDA in [7,8] is summarized as shown below

Given a data matrix \(A = \{ a_{i1}, ..., a_{ij} \} \in R^{m \times n} \) with \(r \) classes and a kernel function \(K \), it computes the \(r-1 \) dimensional representation of any input vector \(z \in R^{m} \) by applying GSVD in the feature space defined by the feature mapping \(\varphi \) such that

\[
K(a_i, a_j) = \langle \varphi(a_i), \varphi(a_j) \rangle
\]

where:

\(A \) = matrix of \(m \times n \) training data samples

\(m \) = number of features

\(r \) = number of training samples

\(n \) = number of wood species

1) Compute between-class scatter matrix, \(K_b \) and within-class scatter matrix, \(K_w \):

\[
c = \text{number of wood species (class) in the training database.}
\]

\[
M_i = \text{the number of training samples in class } i,
\]

\[
x_i = \text{set of wood images belonging to class } i,
\]

\[
x_k = \text{ith image of that class}
\]

\[
K_b = \sum_{i=1}^{c} M_i (x_i - \mu_i)(x_i - \mu_i)^T
\]

\[
K_w = \sum_{i=1}^{c} \sum_{x_k \in \mathcal{X}_i} (x_k - \mu_i)(x_k - \mu_i)^T
\]

2) Apply GSVD to the pair \(K_b \) and \(K_w \). And we have vector of singular matrix,

\[
X^T K_b X \left[\begin{array}{c} \Gamma_b^T \Gamma_b \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} \Gamma_b^T \\ 0 \\ 0 \end{array} \right]
\]

3) The LDA in feature space finds transformation matrix

\[
G = [\varphi(1), ..., \varphi(r-1)] = [\varphi_{1,1}, ..., \varphi_{1,r-1}; \varphi_{2,1}, ..., \varphi_{2,r-1}; \ldots; \varphi_{n,1}, ..., \varphi_{n,r-1}]
\]

where the columns of \(G \) are the eigenvectors corresponding to \(r-1 \) largest eigenvalues of \(K_{b} \).

4) For any input vector, \(z \in R^{n'} \), a dimension reduced representation is computed as

\[
G^T \left[\begin{array}{c} K(a_1,z) \\ \vdots \\ K(a_n,z) \end{array} \right] \in R^{r-1 \times 1}
\]

E. Final Classification Stage

The two classifiers used in this system are LDA and k-NN. Both classifiers are used to compare the classification accuracy based on (15).

\[
\text{ClassificationAccuracy} = \frac{\text{number of correctly classified test images}}{\text{number of test images}} \times 100
\]

(i) **KNN classifier**

KNN classifier is used to classify the wood species. The test data is classified by calculating the Euclidean distance, \(d(x,y) \) to the nearest training data as in (16). Then, use simple majority of the category of nearest neighbors to determine the wood species of the test data.

\[
d(x,y) = \sqrt{\sum_{i=1}^{g}(x_i - y_i)^2}
\]

where \(x = \) training data and \(y = \) test data.

(ii) **LDA classifier**

The algorithm of LDA is as follows [14]:

(a) Find mean \(\mu_i \) for each features of a species \(i \) (\(\mu_i \) is a matrix with number of column equal to number of features)

(b) Construct covariance matrix \(\Sigma_i \) for each species

(c) Construct pooled within group covariance matrix,

\[
\Sigma = \frac{1}{N} \sum_{j=1}^{g} \Sigma_i = \frac{1}{g} \sum_{i=1}^{g} \Sigma_i
\]

Which is calculated for each \((r,s) \) entry in the matrix.

(d) Construct prior probabilities vector, \(p \). Prior probabilities for species \(i \) is equal number of samples in species \(i \) divided by number of total samples in database.

\[
p_i = \frac{n_i}{N}
\]

(e) After discriminant analysis is completed for the training set, a linear coefficient for each class is obtained. To make classification for testing set, the following discrimination function is used:

\[
f_i = \mu_i C^{-1} x_k^T - \frac{1}{2} \mu_i C^{-1} \mu_i^T + \ln(p_i)
\]
Where x_k is the feature array of test sample k and sample k will be assigned to Species i that has maximum f_i.

III. EXPERIMENTAL RESULTS

For clustering method, it is important to select the correct number of clusters for good recognition rate. In order to determine the right number of clusters for our system, we calculated the sum of squared error (SSE) for different number of cluster (from 1 cluster to 52 clusters) as shown in Fig. 5 below based on (5). The wood species database is clustered based on 157 features obtained from fused BGLAM and SPPD feature extractors. Based on Fig. 5, it can be seen that SSE is low after $k=16$ onwards. Hence, the right number of cluster should be between $k=16$ until $k=52$.

![Fig. 5 Sum of Squared Error for different number of clusters](image)

![Fig. 6 Classification accuracy based on different number of clusters](image)

We performed several experiments to investigate the effectiveness of the proposed method. Based on results shown in Fig. 6, the classification accuracy rate is highest at number of cluster, $k=16$. Hence, the right number of cluster that we chose to cluster the wood database is 16 clusters. As shown in Table II and Table III, the implementation of clustering and nonlinear dimension reduction has improved the classification accuracy from 84% to 96.92% for LDA classifier. In this paper, LDA classifier gives higher classification accuracy compared to KNN classifier.

IV. CONCLUSION

This paper concludes that the implementation of k-means clustering and nonlinear dimension reduction as the pre-classification stage have reduced the computing time and improved the performance of the tropical wood recognition system. The k-means clustering enables the system to only compute the wood database in a respective cluster instead of computing the entire database to classify a wood species while nonlinear dimension reduction enables the wood samples to be represented more accurately in a lower-dimensional space. BGLAM and SPPD have been implemented as the feature extractors while KNN and LDA classifiers were used to measure the classification accuracy of the proposed system.

ACKNOWLEDGMENT

The authors would like to thank Malaysian Ministry of Science, Technology and Innovation (MOSTI) for funding this research through Technofund research grant (TF0106C213).

REFERENCES

