Determination and Assessment of Ground Motion and Spectral Parameters for Iran

G. Ghodrati Amiri, M. Khorasani, Razavian Ameri, M. Mohamadi Dehcheshmeh, S. Fathi

Abstract—Many studies have been conducted for derivation of attenuation relationships worldwide, however few relationships have been developed to use for the seismic region of Iranian plateau and only few of these studies have been conducted for derivation of attenuation relationships for parameters such as uniform duration. Uniform duration is the total time during which the acceleration is larger than a given threshold value (default is 5% of PGA). In this study, the database was same as that used previously by Ghodrati Amiri et al. (2007) with same correction methods for earthquake records in Iran. However in this study, records from earthquakes with $M_c < 4.0$ were excluded from this database, each record has individually filtered afterward, and therefore the dataset has been expanded. These new set of attenuation relationships for Iran are derived based on tectonic conditions with soil classification into rock and soil. Earthquake parameters were chosen to be hypocentral distance and magnitude in order to make it easier to use the relationships for seismic hazard analysis. Tehran is the capital city of Iran with a large number of important structures. In this study, a probabilistic approach has been utilized for seismic hazard assessment of this city. The resulting uniform duration against return period diagrams are suggested to be used in any projects in the area.

Keywords—Attenuation Relationships, Iran, Probabilistic Seismic Hazard Analysis, Tehran, Uniform Duration

I. INTRODUCTION

The purpose of this study is to pursue the previous research publications of the first author on the subject of attenuation relationships for Iran (Ghodrati Amiri et al., 2007) [1] and derive new relations for uniform. Peak ground motion, frequency content and duration of ground motion are three characteristics of ground motion, which are important in earthquake engineering applications.

Iran is located in one of the seismic regions of the world. The occurrence of many destructive earthquakes in recent years has emphasized the urgent need to assess earthquake hazards in this part of world [2]. Several studies have been conducted to link structural damage to parameters related either directly or indirectly to the duration of strong ground motion (Jalali and Hakimvand, 2006) [3].

Several studies have been conducted to propose procedures for estimating the strong motion duration of an accelerogram. Naeim (2001) has explained some of these definitions for duration of an earthquake record. According to this reference, “bracketed duration” is the time interval between the first and the last acceleration peaks greater than a specified value (usually 0.05g) [4]. Others definitions are based on the integral of the square of acceleration referred to as the accelerograms intensity or on the average energy arrival rate. As it has been mentioned in this reference, the comparisons show that different procedures result in different durations of strong motion. Therefore, since there is no standard definition of strong motion duration, the selection of a procedure for calculation of the duration for a certain study depends on the purpose of the intended application. However, Jalali and Hakimvand (2006) concluded that nearly all of the definitions could be classified into three generic groups, namely, bracketed durations, uniform durations and significant duration [3]. Uniform duration defined as the sum of the time intervals during which the acceleration is greater than the threshold. The concept of uniform duration is illustrated in Figure 1. This definition is less sensitive to the threshold level than the bracketed duration, but it has the disadvantage that it does not define a continuous time window during which the shaking can be considered strong.

![Fig. 1 Uniform duration of an accelerogram (Jalali and Hakimvand, 2006) [3]](image)

As a case study, using the proposed relationships in this article, a probabilistic approach has been utilized for seismic hazard assessment of the capital city of Iran.

II. THE INPUT DATABASE AND THE INPUT PARAMETERS

The database used as the input for this study consists of 381 earthquake events including 663 earthquake records. This suitable catalog of earthquake records has enough number of data components that allow for regression of a curve and is necessary for development of an attenuation model. The preliminary catalog was gathered by the first author of this article (Ghodrati Amiri et al., 2007) [1], using different
resources. The processing of data consisted of correction and conversion of magnitude, calculation and correction of distance of epicenter to the recording station and determination and correction of the ground type of the recording station are all the same as what has been done in the previous study of the author (Ghodrati Amiri et al., 2007). The details of the data set are not repeated here in order to save space [1].

All the values for magnitude are used in terms of surface wave. Most of values for large-magnitude earthquakes in Iran have been reported in terms of surface wave magnitude. For other cases, the magnitude converted from other terms into surface wave terms. Here, geometric methods were used together with the geographic coordinates of epicenter and accelerograph, and focal depth to calculate the hypocentral distance. Hypocentral distance \(R \) is assumed the hypotenuse of a right-angled triangle in which focal depth \(D \) and distance between epicenter and accelerograph \(r \) are the other sides.

Ground type is used for categorization according to the properties of subsoil and shear wave velocities. The ground type affects all the characteristics of ground motion such as amplitude, frequency content and period. The extent of this effect is related to the geometry and properties of sub-surface layers and the topographic characteristics of construction site. Based on this definition, one can consider the rock type equivalent to shear wave velocities more or equal to 375 m/sec and the soil type equivalent to shear wave velocities less than 375 m/sec.

III. ATTENUATION MODEL

One of the important elements in seismic hazard assessment is attenuation relationships. With regards to the acquired data in this study, the two parameters of magnitude and hypocentral distance were directly used in the models. Similar to the previous study of the first author (Ghodrati Amiri et al., 2007) [1], in order to consider the ground type, two separate models were developed for rock and soil ground types. This classification is comparable to the classification of Iranian Code of Practice for Seismic Resistant Design of Buildings (2005) [5].

Moreover, concerning the data acquired in this study and categorization of Iran in two regions of Zagros, and Alborz-Central Iran, the attenuation relationships for these regions were derived. The polygon with the coordinates in Table 1 was considered Zagros region and the rest of Iran as Alborz-Central Iran region. It is to be noted that categorization of the records in different regions was performed based on the causing earthquake.

TABLE I

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>R</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alborz and Central Iran Rock</td>
<td>4.414</td>
<td>0.103</td>
<td>3.543</td>
<td>0.301</td>
<td>0.827</td>
<td>0.412</td>
</tr>
<tr>
<td>Soil</td>
<td>6.177</td>
<td>1.159</td>
<td>8.636</td>
<td>0.120</td>
<td>0.807</td>
<td>0.331</td>
</tr>
<tr>
<td>Zagros Rock</td>
<td>1.655</td>
<td>0.767</td>
<td>-2.685</td>
<td>0.302</td>
<td>0.812</td>
<td>0.207</td>
</tr>
<tr>
<td>Soil</td>
<td>9.567</td>
<td>2.577</td>
<td>15.483</td>
<td>0.046</td>
<td>0.808</td>
<td>0.268</td>
</tr>
</tbody>
</table>

In addition, In Figure 2, \(D_u \) diagrams are obtained based on \(R \) for the different rates of \(M_s \) (5, 6, 7). According to these diagrams, by increasing the \(M_s,D_u \) is also increased based on \(R \).

IV. PREDICTIVE EQUATIONS FOR UNIFORM DURATION

The functional form of the predictive equations for uniform duration could be determined through non-linear regression analysis to be:

\[
\ln(D_u) = C_1 + C_2M_s + C_3 \ln(M_s) + C_4 \cdot \ln(R) \tag{1}
\]

Where, \(R \) is the hypocentral distance for an earthquake of given magnitude \(M_s \). \(D_u \) is uniform duration and the coefficients used in the final model are shown in Table 2.

TABLE II COEFFICIENTS OF THE PROPOSED ATTENUATION MODEL FOR UNIFORM DURATION

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>R</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alborz and Central Iran Rock</td>
<td>4.414</td>
<td>0.103</td>
<td>3.543</td>
<td>0.301</td>
<td>0.827</td>
<td>0.412</td>
</tr>
<tr>
<td>Soil</td>
<td>6.177</td>
<td>1.159</td>
<td>8.636</td>
<td>0.120</td>
<td>0.807</td>
<td>0.331</td>
</tr>
<tr>
<td>Zagros Rock</td>
<td>1.655</td>
<td>0.767</td>
<td>-2.685</td>
<td>0.302</td>
<td>0.812</td>
<td>0.207</td>
</tr>
<tr>
<td>Soil</td>
<td>9.567</td>
<td>2.577</td>
<td>15.483</td>
<td>0.046</td>
<td>0.808</td>
<td>0.268</td>
</tr>
</tbody>
</table>

In addition, In Figure 2, \(D_u \) diagrams are obtained based on \(R \) for the different rates of \(M_s \) (5, 6, 7). According to these diagrams, by increasing the \(M_s,D_u \) is also increased based on \(R \).
V. PROBABILISTIC SEISMIC HAZARD ANALYSIS

As it has been mentioned in the article written by the first author (Ghodrati Amiri et al., 2006) [2], a variety of factors influence the choice between these two approaches. These factors are the purpose of the hazard assessment, the seismic environment (whether the location is in a high, moderate or low seismic risk zone), and the scope of the assessment (whether one is assessing a site risk, a multi-site risk, or risk to a region). As for the earthquake decision, a general rule states the more quantitative the decision to be made, the more appropriate is the PSHA approach (McGuire, 2001) [6]. As the result of these three criteria, only PSHA approach has been followed in the study.

VI. SEISMICITY OF TEHRAN

Being surrounded by young faults, Tehran is located in one of the active seismic regions of Iran. There is a harsh topographic discrepancy in the city of Tehran, particularly in the northern area, that is of high importance to seismotectonic studies. To evaluate the earthquake hazard for an area or a district, all the quaky resources and their capability in motivating the earth movements shall be identified in future. From the important faults of Tehran district and its surroundings are the faults of North Tehran, Mosha, Niavaran, North Rey, South Rey, Kahrizak, Garmar and Pishva [7]. The names and specifications of these faults are listed in Table 3. In addition, the location of these faults toward Tehran is demonstrated in Figure 3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Fault</th>
<th>Type</th>
<th>Length (Km)</th>
<th>Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mosha</td>
<td>Thrust-</td>
<td>200</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>North</td>
<td>Thrust-</td>
<td>75</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Tehran</td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Garmar</td>
<td>Thrust-</td>
<td>70</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kahrizak</td>
<td>Thrust-</td>
<td>40</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pishva</td>
<td>Thrust-</td>
<td>34</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>South Rey</td>
<td>Thrust-</td>
<td>18.5</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>North Rey</td>
<td>Thrust-</td>
<td>17</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Niavaran</td>
<td>Thrust-</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The former earthquake history of any region shows the conditions of seismicity in that region. To get the specifications of seismotectonic conditions, there is a need to gather a complete list of earthquake events of that area or district and to study on that information. The earthquakes occurred in Tehran can be divided into two groups:

A) Historical earthquakes (earthquakes happened before the year 1900)
B) Instrumental earthquake (earthquake events after the year 1900 till now)
Acquaintance with the earthquake events before the 20th century is based on data gathering out of ancient and historical inscriptions. Therefore, it may contain overstatement or exaggeration about the rate of destructiveness and the damage. The first earthquake happened in this area returns to 400 BC that destroyed the whole areas of Tehran and Rey. Researchers like Berberian [10], Nabavi [11], and Ambraseys and Melville [12] have done several researches on this subject. About the historical earthquakes of Iran, among these researches, Ambraseys and Melville’s [12] catalogue is more complete.

VII. SEISMIC PARAMETERS OF TEHRAN

Evaluating the seismic parameters is based on the data of earthquake events happened in the area and using the probabilistic methods. Earthquake catalogue around 200 km is gathered with knowing that the earthquakes follow the Poisson distribution. Seismic parameters, rate of event, and earthquake probability are calculated by Kijko method [13]. The basic assumption in evaluating the seismic parameters is that the earthquake events shall be independent from others and that they shall follow Poisson distribution. Usually, the complete list of earthquake events doesn’t contain Poisson distribution. Therefore, excluding the pre-earthquake and the aftershocks from the list is mandatory for each of the main earthquakes. The method used here to exclude the pre-earthquake and the aftershock is space-time window method. [14] In this study, for the lack of earthquakes containing both M_b and M_S records, the method presented by the National Committee of Big Dams introduced to the whole of Iran is used [15]. The relation is:

$$M_s = 1.21(M_b) - 1.29$$ \hspace{1cm} (2)

In track record probability estimation method, the corresponding usage of historical and instrumental data is permitted. The basic level depends on using historical date containing low accuracy and wide range and the Gutenberg–Richter function for instrumental earthquakes and the method of probability estimation. According to these previews and the calculated computations by Kijko method, the annual event rate of the earthquake based on the magnitude of earthquakes with $M_s > 4.0$ in the distance of 200 km of Tehran is presented in Figure 4.

VIII. SEISMIC HAZARD ASSESSMENT

To evaluate the D_e parameter, the probabilistic seismic hazard analysis, which produced by attenuation relationships, has been used. [16],[17]

For the earthquake magnitude function and the fault separation length, the Nowrooz method [14] has been used. In this section, based on modeled and obtained seismic sources and because of that the quaky data is incomplete and also low accuracy of earthquake data (lack of accurate seismic network), the software SEISRISK III [18] is used to obtain the D_e parameter during the effective lifetime of the construction (based on 10% probability of the event in 50 years, equal to the return period of 475 years, the design earthquake in 2800 standard [19]) for a 12×11 network covering different parts of Tehran. The calculated rates by the software are presented as equal lines for the rock (1 and 2 tectonic conditions in standard No. 2800) and soil (3 and 4 tectonic conditions in standard No. 2800) specifications in Figures 5 and 6.
In this paper a probabilistic seismic uniform duration assessment of metropolitan Tehran and its vicinity is conducted. Also, according to division of seismic regions, soil types and used records, the comprehensibility of these relationships is singular for Iran region up to present. The significant results of this study can be summarized as:

- With increasing the magnitude and focal distance, uniform duration is also increased and decreased respectively.
- The contour levels of the uniform duration maps range from 44 to 50 sec in 475 years for rock condition and 35.85 to 37.05 sec in 475 years for soil condition.
- The highest uniform duration contours encompass the West North-West and South-West of Tehran.
- The smallest uniform duration are expected in East of the city.

REFERENCES

