Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

Yahya H. Zweiri

Abstract—The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.

Keywords—Neural Networks, Backpropagation, Optimization.

I. INTRODUCTION

BACKPROPAGATION (BP) algorithm is used for training artificial neural networks [2]. Training is usually carried out by iterative updating of weights based on the error signal. The negative gradient of a mean-squared error function is commonly used. In the output layer, the error signal is the difference between the desired and actual output values, multiplied by the slope of a sigmoidal activation function. Then the error signal is back-propagated to the lower layers. BP is a descent algorithm, which attempts to minimize the error at each iteration. The weights of the network are adjusted by the algorithm such that the error is decreased along a descent direction. Traditionally, two parameters, called learning rate (LR) and momentum factor (MF), are used for controlling the weight adjustment along the descent direction and for dampening oscillations. The BP algorithm is used for many applications. However, its convergence rate is relatively slow, especially for networks with more than one hidden layer. The reason for this is that the saturation behaviour of the activation function used for the hidden and output layers. Since the output of a unit exists in the saturation area, the corresponding descent gradient takes a very small value, even if the output error is large, leading to very little progress in the weight adjustment. The selection of the LR and MF is arbitrary, because the error surface usually consists of many flat and steep regions and behaves differently from application to application. Large values of the LR and MF are helpful to accelerate learning. However, this increases the possibility of the weight search jumping over steep regions and moving out of the desired regions.

The problem of improving the efficiency and convergence rate of the back-propagation algorithm has been investigated by a number of researchers. For example, [3] does not use higher-order derivatives but determines individual learning rates for each component of the weights vector separately. Three new parameters are required and like the conventional BP, convergence rates are slow. In addition, a large number of trial runs are required before arriving at the right parameter. [4] has proposed a different cost function, whilst [5] proposed variables are re-scaled dynamically. [6], [7] considered dynamic learning rate and momentum factor optimization using derivative information. [8] used a genetic algorithm for self-adaptation to accelerate the steepest descent rate, by slightly modifying the learning rate of the previous step. [9] presented a new incremental learning method for pattern recognition, employing bounded weight modification and structural adaptation learning rules and applies initial knowledge to constrain the learning process. [10] investigated the behaviour of the BP algorithm with a small constant learning rate with stationary, random input environments. The sequence of weight estimates is approximated by ordinary differential equations, in the sense of weak convergence of a random processes as a small number (learning rate) tends to zero. [11] proved the companion Rosenblatt’s perceptron convergence (PC) theorem for feed-forward networks, stating that the BP algorithm converges to an optimal solution for linearly separable patterns. [12] presented a constraint to be satisfied in addition to the demand for minimization of the cost function, and used Lagrangian multipliers in order to improve convergence. [13] gives a detailed analysis of the delta rule algorithm, indicating why one implementation leads to a stable numerical process. In [14], the necessary and sufficient conditions for the stability behaviour of the three-term backpropagation algorithm are established.

This paper presents efficient BP learning using simultaneously optimized Learning Rate (LR), Momentum Factor (MF) and Proportional Factor (PF) terms. A set of recursive formulae is used for calculating the derivatives of the optimization target with respect to LR, MF and PF. This behaves as a feed-forward procedure in the BP algorithm and does not increase the computational complexity. A group of approaches exploiting the derivatives with respect to LR, MF and PF are presented. The approaches are applied to an example problem and shown that the convergence rate is significantly improved compared to the plain three-term BP algorithms.

Manuscript received July 17, 2006.

Y.H. Zweiri is with Department of Mechanical Engineering, Mu’tah University, Karak, Jordan. Tel: (+00962) 32372594, EX:3022, E-mail: (yahya.zweiri@kcl.ac.uk) or (yhzweiri@mutah.edu.jo)
The paper is organized as follows. First, the backpropagation algorithm is given. Then, the proportional factor term is proposed. Three approaches are presented to estimate optimal values for the LR, MF and PF terms. Finally, conclusions are drawn.

II. BACKGROUND

The back-propagation algorithm for multi-layer neural networks is a gradient descent procedure used to minimize a least-square objective function (error function). Assume a batch of training sample pairs: \((I_1, T_1), \ldots, (I_n, T_n)\), where \(I_s, 1 \leq s \leq n\), represent the \(s\)th input in the batch, and \(T_s, 1 \leq s \leq n\), is the corresponding desired output (target). For arbitrary hidden layers neurons, the least-square objective function in the networks weight space is

\[
E = \frac{1}{n Z_M} \sum_{s=1}^{n} [T_s - O^M_s]_s^T [T_s - O^M_s],
\]

where \(O^M_s\) is the output vector of an \(M\)-layered network with \(I_s\) as input, and \(Z_M\) is the number of output neurons.

Let \(W\) be a vector formed by all the network weights and \(V(E(W(k)))\) be the gradient of \(E\) at \(W = W(k)\), with \(k = 1, 2, 3, \ldots, N\), being the iteration number of the weights vector. The conventional back-propagation algorithm with a momentum term can be simply described as

\[
\Delta W(k) = \alpha (-\nabla E(W(k))) + \beta \Delta W(k-1) + \gamma e(W(k)),
\]

where \(\gamma\) is the proportional factor (PF). It is noted that the BP algorithm given by Equation (5) has three terms, one proportional to the derivative of \(E(W(k))\), another proportional to the previous value of the incremental change of the weights and a third term proportional to \(e(W(k))\). These three terms can be viewed as being analogous to the three terms in a PID controller, commonly used in control applications.

IV. ESTIMATION OF OPTIMAL LR, MF AND PF TERMS

The optimization of \(\alpha, \beta,\) and \(\gamma\), such that \(W(k+1)\) minimizes \(E\) is required. The function \(E\) can be treated as a function with three independent variables \(E(\alpha, \beta, \gamma)\). From Equation (5)

\[
W(k+1) = W(k) + \alpha P(k) + \beta \Delta W(k-1) + \gamma e(k),
\]

where \(P(k) = -\nabla E(k)\) is a descent directional vector. Substituting Equation (6) into Equation (3) gives

\[
\alpha^m_s \equiv f(W^m(k) + \alpha P^m(k) + \beta \Delta W^m_{1}(k-1) + \gamma e^m_{1}(k)T O^{m-1}).
\]

Computation of the first and second derivatives of \(E\) with respect to \(\alpha, \beta\) and \(\gamma\) yields:

\[
g(\alpha, \beta, \gamma) = \begin{bmatrix}
\frac{\partial E(\alpha, \beta, \gamma)}{\partial \alpha} \\
\frac{\partial E(\alpha, \beta, \gamma)}{\partial \beta} \\
\frac{\partial E(\alpha, \beta, \gamma)}{\partial \gamma}
\end{bmatrix}
\]

The modified BP algorithm is hence

\[
\Delta W(k) = \alpha (-\nabla E(W(k))) + \beta \Delta W(k-1) + \gamma e(W(k)),
\]

for on-line learning, \(e(W(k)) = [T_s - O^M_s]_s^T\) for the output layer weights, and \(e_s = \sum_{s=1}^{n} [T_s - O^M_s]^T\) for the hidden layer weights. See [1] for further details.

III. PROPORTIONAL FACTOR TERM

The BP algorithm given by (2) is modified by adding an extra term in order to increase the BP learning speed [1]. This term is proportional to \(e(W(k))\) which represents the difference between the output and the target at each iteration. For batch learning \(1, e(W(k)) = [e_1, e_2, \ldots, e_n]^T\), where the vector \(e\) is of appropriate dimension and \(e_s = \sum_{s=1}^{n} [T_s - O^M_s]^T\).

The Hessian matrix of \(E\) is given by

\[
H(\alpha, \beta, \gamma) = \begin{bmatrix}
\frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \alpha^2} & \frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \alpha \beta} & \frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \alpha \gamma} \\
\frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \beta \alpha} & \frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \beta^2} & \frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \beta \gamma} \\
\frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \gamma \alpha} & \frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \gamma \beta} & \frac{\partial^2 E(\alpha, \beta, \gamma)}{\partial \gamma^2}
\end{bmatrix}
\]

which can be similarly computed.

To complete the computation of the gradient vector Equation (8) and the Hessian matrix Equation (12), the derivatives of \(O^M_s\) at \((\alpha_0, \beta_0, \gamma_0)\) can be computed from Equation (7). Thus the derivatives of the objective function \(E(X)\) can be found, where

\[
X = [\alpha \quad \beta \quad \gamma]^T.
\]
A. Error Quadratic Approximation Approach

A second order Taylor polynomial of degree 2 can be used to approximate \(E(X) \) for \(X \) near \((\alpha_0, \beta_0, \gamma_0)\). Since \(E(X) \) has continuous second-order partial derivative, this gives

\[
E(X) \approx E(\alpha_0, \beta_0, \gamma_0) + (\alpha - \alpha_0) \frac{\partial E}{\partial \alpha} + (\beta - \beta_0) \frac{\partial E}{\partial \beta} + (\gamma - \gamma_0) \frac{\partial E}{\partial \gamma}
\]

When \(\frac{\partial^2 E}{\partial \alpha^2} > 0 \), \(\frac{\partial^2 E}{\partial \beta^2} > 0 \), and \(\frac{\partial^2 E}{\partial \alpha \partial \beta} > 0 \), the quadratic polynomial simplifies to

\[
E(X) \approx E(\alpha_0, \beta_0, \gamma_0) + (\alpha - \alpha_0) \frac{\partial E}{\partial \alpha} + (\beta - \beta_0) \frac{\partial E}{\partial \beta} + (\gamma - \gamma_0) \frac{\partial E}{\partial \gamma}
\]

\[
= \frac{1}{2} \Gamma^T \Gamma + \Gamma^T g + a_e
\]

where \(\Gamma = [\alpha - \alpha_0, \beta - \beta_0, \gamma - \gamma_0]^T, \ a_e = E(\alpha_0, \beta_0, \gamma_0) \).

I) Cases: Four separate cases are considered for computing optimal values for the learning parameters.

Case I: From [15], \(E(X) \) has continuous second partial derivatives in a convex set \(C \) and let the Hessian matrix \(H(X) \) at \(X \) be positive definite for all \(X \) in \(C \). Also let \(y \) be a critical point of \(E(X) \) in \(C \). Then \(E(X) \) is strictly convex in \(C \) and \(y \) is strong global minimizer of \(E(X) \) over \(C \). Suppose that \(E \) is a function with \(E(0,0,0) = 0 \) and gradient \(E(0,0,0) = 0 \).

From Equation (14), the quadratic polynomial simplifies to

\[
E(X) \approx \frac{1}{2} \alpha^2 E_{\alpha \alpha} + \frac{1}{2} \beta^2 E_{\beta \beta} + \frac{1}{2} \gamma^2 E_{\gamma \gamma} + \alpha \beta E_{\alpha \beta} + \alpha \gamma E_{\alpha \gamma} + \beta \gamma E_{\beta \gamma} + \gamma \alpha E_{\gamma \alpha}.
\]

The discriminants are

\[
D_1 = 4 \left(\frac{E_{\alpha \alpha}}{4} E_{\beta \beta} - (E_{\alpha \beta})^2 \right)
\]

\[
D_2 = 4 \left(\frac{E_{\alpha \alpha}}{4} E_{\gamma \gamma} - (E_{\alpha \gamma})^2 \right)
\]

\[
D_3 = 4 \left(\frac{E_{\beta \beta}}{4} E_{\gamma \gamma} - (E_{\beta \gamma})^2 \right)
\]

When \(H \) is a positive definite (i.e. \(E_{\alpha \alpha} > 0, D_1 > 0 \)), symmetric, square matrix and \((D_2 > 0, D_3 > 0) \), the optimal LR, MF and PF terms can be calculated as

\[
\frac{dE}{dT} = H \Gamma + g = 0 \Rightarrow \Gamma = -H^{-1} g
\]

It is noted that this procedure minimizes Equation (14).

Case II: When \(H \) is a positive definite matrix and at least one of \(D_2 \) or \(D_3 \) is negative, then \(E(\alpha, \beta, \gamma) \) cannot be characterized as convex. However, \(E(\alpha, \beta, 0) \) is convex and optimal LR and MF can be calculated as in Case I by setting \(\gamma = 0 \).

Case III: When \(H \) is a non-positive definite matrix and \(E_{\alpha \alpha} > 0 \), the second order expansion of \(E(\alpha, 0, 0) \) is convex along the descent direction of \(P(k) \). Then the optimal LR can be calculated as in Case I by setting \(\beta = \gamma = 0 \).

Case IV: When \(H \) is a non-positive definite matrix and \(E_{\alpha \alpha} < 0 \), the optimization target behaves in an accelerated decreased manner along the descent direction \(P(k) \) because both \(E_{\alpha \alpha} \) and \(E_{\alpha \alpha} \) take negative values. Then the optimal LR can be estimated by the line search method proposed by Yu et al. [7], which has been shown to be capable of providing an effective descent to the optimization target.

B. Approximation of the Sigmoidal nonlinearity function

Let

\[
([W_i^M(k) + \alpha P_i^M(k) + \beta \Delta W_i^M(k - 1) + \gamma e_i^M(k)]^T O_{s - 1}^M) = x
\]

Then the sigmoidal nonlinear function of the output layer can be approximated by a set of linear functions:

\[
f(x) = \begin{cases}
 m_1 x + b_1 & \text{for } x_1 \leq x \leq x_2, \\
 m_2 x + b_2 & \text{for } x_1 \geq x, \\
 m_2 x + (2b_1 - b_2) & \text{for } x_2 \leq x.
\end{cases}
\]

Then

\[
O_s^M = f([W_i^M(k) + \alpha P_i^M(k) + \beta \Delta W_i^M(k - 1) + \gamma e_i^M(k)]^T O_{s - 1}^M)
\]

By substituting Equation (18) into Equations (9)-(11) and equating \(e_\alpha, e_\beta, \) and \(e_\gamma \) to zero yields:

\[
\alpha m_j P_i^M \sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \alpha} \right] \cdot O_{s - 1}^{M - 1} + \beta m_j \Delta W_i^M(k - 1)
\]

\[
\sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \alpha} \right] \cdot O_{s - 1}^{M - 1} + \gamma m_j e_i^M \sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \gamma} \right] \cdot O_{s - 1}^{M - 1} = \sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \alpha} \right] \cdot (T_s - m_j W_i^M(k) O_{s - 1}^{M - 1} - b_j)
\]

\[
\alpha m_j P_i^M \sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \beta} \right] \cdot O_{s - 1}^{M - 1} + \beta m_j \Delta W_i^M(k - 1)
\]

\[
\sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \beta} \right] \cdot O_{s - 1}^{M - 1} + \gamma m_j e_i^M \sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \gamma} \right] \cdot O_{s - 1}^{M - 1} = \sum_{s=1}^{n} \left[\frac{\partial O_i^M}{\partial \beta} \right] \cdot (T_s - m_j W_i^M(k) O_{s - 1}^{M - 1} - b_j)
\]

Since the matrix \(A_2 \) (Equation (23)) is a nonsingular, the optimal \(\alpha, \beta, \) and \(\gamma \) can be calculated by solving Equations (19)-(21) simultaneously:

\[
\Gamma = A_2^{-1} R_2
\]
\[A_2 = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \] (23)

where

\[A_{11} = m_j P_i^M \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \alpha} \right]^T O^{M-1}_s, \]
\[A_{12} = m_j \Delta W_i^M (k-1) \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \alpha} \right]^T O^{M-1}_s, \]
\[A_{13} = m_j e_i^M \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \alpha} \right]^T O^{M-1}_s, \]
\[A_{21} = m_j P_i^M \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \beta} \right]^T O^{M-1}_s, \]
\[A_{22} = m_j \Delta W_i^M (k-1) \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \beta} \right]^T O^{M-1}_s, \]
\[A_{23} = m_j e_i^M \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \beta} \right]^T O^{M-1}_s, \]
\[A_{31} = m_j P_i^M \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \gamma} \right]^T O^{M-1}_s, \]
\[A_{32} = m_j \Delta W_i^M (k-1) \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \gamma} \right]^T O^{M-1}_s, \]
\[A_{33} = m_j e_i^M \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \gamma} \right]^T O^{M-1}_s \]

and

\[R_2 = \begin{bmatrix} \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \alpha} \right]^T (T_s - m_j W_i^M (k) O^{M-1}_s - b_j) \\ \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \beta} \right]^T (T_s - m_j W_i^M (k) O^{M-1}_s - b_j) \\ \sum_{s=1}^{n} \left[\frac{\partial O^M_s}{\partial \gamma} \right]^T (T_s - m_j W_i^M (k) O^{M-1}_s - b_j) \end{bmatrix} \] (24)

Substituting Equation (25) into Equation (1), the objective function becomes

\[E \approx \frac{1}{n Z_M} \sum_{s=1}^{n} \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) - (\alpha - \alpha_0) \frac{\partial O_s^M}{\partial \alpha} \right. \]
\[\left. + (\beta - \beta_0) \frac{\partial O_s^M}{\partial \beta} + (\gamma - \gamma_0) \frac{\partial O_s^M}{\partial \gamma} \right)^2. \] (26)

From Equation (26), setting the partial derivatives of \(E \) with respect to \(\alpha, \beta \) and \(\gamma \) equal to zero, yields three equations in three unknowns:

\[(\alpha - \alpha_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \alpha} \right]^2 + (\beta - \beta_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \beta} \right]^2 \]
\[+ (\gamma - \gamma_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \gamma} \right]^2 \]
\[= \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \alpha} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right)
\]
\[+ \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \beta} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right) \]
\[+ \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \gamma} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right) \] (27)

\[(\alpha - \alpha_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \alpha} \right]^2 + (\beta - \beta_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \beta} \right]^2 \]
\[+ (\gamma - \gamma_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \gamma} \right]^2 \]
\[= \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \alpha} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right)
\]
\[+ \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \beta} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right) \]
\[+ \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \gamma} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right) \] (28)

\[(\alpha - \alpha_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \alpha} \right]^2 + (\beta - \beta_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \beta} \right]^2 \]
\[+ (\gamma - \gamma_0) \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \gamma} \right]^2 \]
\[= \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \alpha} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right)
\]
\[+ \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \beta} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right) \]
\[+ \sum_{s=1}^{n} \left[\frac{\partial O_s^M}{\partial \gamma} \right] \left(T_s - O_s^M (\alpha_0, \beta_0, \gamma_0) \right) \] (29)

The optimal \(\alpha, \beta \) and \(\gamma \) values can be calculated by solving Equations (27)–(29) simultaneously.

V. SIMULATION RESULTS

Computer simulations for the learning parameters of the three-term backpropagation algorithm using three optimization approaches have been carried out. XOR problem, which is a popular benchmark for neural network training is employed [16]. The network architecture used for this problem consisted of four input units, two hidden units and one output unit. The same initial weights as well as the same learning rate, momentum factor and proportional factor are used for the algorithm in each optimization approach. The convergence of the learning process is measured by taking the half-sum-of-squared error as the objective function. The initial values of the weights are drawn randomly between \([-10, 10]\). For the example, the learning parameters of the plain three-term BP algorithm is carefully chosen so as to make the convergence of the learning process as fast as possible. To make sense, the convergence performances versus running time were compared. The learning process terminates when the iterations are over a fixed number or the total squared error is less than.
TABLE I

<table>
<thead>
<tr>
<th>Methods</th>
<th>Terminated Iteration Number</th>
<th>Squared Error</th>
<th>Running time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Quadratic Approximation with proportional factor</td>
<td>50</td>
<td>5×10^{-8}</td>
<td>35</td>
</tr>
<tr>
<td>Error Quadratic Approximation without proportional factor</td>
<td>250</td>
<td>3×10^{-3}</td>
<td>132</td>
</tr>
<tr>
<td>Approximation of the Sigmoidal Function with proportional factor</td>
<td>132</td>
<td>5×10^{-6}</td>
<td>43</td>
</tr>
<tr>
<td>Approximation of the Sigmoidal Function without proportional factor</td>
<td>322</td>
<td>3×10^{-3}</td>
<td>144</td>
</tr>
<tr>
<td>First Order Approximation with proportional factor</td>
<td>750</td>
<td>2×10^{-4}</td>
<td>211</td>
</tr>
<tr>
<td>First Order Approximation without proportional factor</td>
<td>978</td>
<td>3×10^{-3}</td>
<td>276</td>
</tr>
<tr>
<td>The plain Three-term BP</td>
<td>1432</td>
<td>3×10^{-3}</td>
<td>243</td>
</tr>
</tbody>
</table>

The tests were performed to evaluate the convergence behaviour for the proposed optimization approaches. The terminated iteration number, averaged running time and error residuals for all the six methods are included in Table I. As can be seen, the learning rate optimization approaches own remarkable advantages in both fast convergence and time saving. The Error Quadratic Approximation approach with proportional factor behaves the best, as compared to the others. This is because it can provide with both much more effective descent direction and relatively accurate estimate of the optimal learning rate at the cost of a moderate increase in computational complexity. As to the First Order Approximation approach, though it exhibits better performance than the plain three-term BP. It behaves much inferior to the other optimization approaches. This degradation is due to the convex approximation of E that is often too crude in the extremely steep regions where the second derivative usually takes a negative value.

Figure 1 presents sample simulation results of the XOR example and the corresponding optimal learning rates versus different iteration number for the Error Quadratic Approximation with Proportional Factor Approach and Error Quadratic Approximation without Proportional Factor Approach. Note that the optimal learning rate sometimes varies from iteration to iteration. This give a sound support in necessity of using dynamic optimization for the learning parameters.

VI. CONCLUSIONS

In this paper a set of optimization approaches are developed and introduced to find the optimal learning parameters to improve the learning rate for the three-term BP algorithm. The
optimization approaches presented in this paper are based on simple manipulations of the first two derivative information, only a limited increase in computational complexity that is comparable to that of the plain three-term BP algorithm is required. Nevertheless, the benefit resultant from the learning parameters optimization is rather considerable. The convergence of the learning process is significantly accelerated and the overall running time for the learning procedure is consequently reduced to a great extent (by a factor up to 7). Quadratic Approximation with Proportional Factor approach is recommended for practical uses since it can provide significantly accelerated convergence at the cost of moderate increase in computational complexity, as compared to the plain three-term BP algorithm.

ACKNOWLEDGMENTS

The author would like to thank Professor J.G. Taylor for his advice.

REFERENCES