Abstract—The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation.

The near unity power factor operation is also achieved. Moreover, among EV’s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords—PMSM, Electric Vehicle, Optimal control, Traction.

I. INTRODUCTION

The main capabilities required in the applications such as traction motor for a hybrid electric vehicle and ISG (Integrated Starter Generator) are wide constant power speed range (CPSR) and high efficiency. Interior PM synchronous motor (IPMSM) is one of the motors suitable for the applications [1]. From the torque performance point of view, however, the IPMSM has two drawbacks. That is, torque ripple and cogging torque are relatively large as compared with a surface PM synchronous motor. Moreover, the IPMSM with concentrated winding is more disadvantageous than that with distributed winding in the respects [2].

These problems are produced mostly by the discontinuous reluctance variation because of the slotted structure of stator core and saturation of magnetic circuit [2], [3]. Particularly, the magnetic saturation of the IPMSM operated in wide speed range through flux weakening control greatly varies according to load condition.

Thus, the optimal design of IPMSM is demanded in order to improve torque performance.

In this paper, each optimal model minimizing torque ripple at the base and maximum speed and cogging torque is investigated by an optimization method without a great change of the motor parameters in the initial designed IPMSM. In addition, the characteristics of each model are compared by Finite Element Analysis (FEA) and characteristic equation. In the end, the final results show the optimal shape according to the operating point of IPMSM must be changed to enhance torque characteristic.

II. PM MODEL AND EQUIVALENT CIRCUIT

Fig. 1 displays the configuration of the initial designed IPMSM with concentrated winding. The CPSR of the initial model is from 680 rpm to 3400 rpm, and the main dimension and specifications are listed in Table I.

<table>
<thead>
<tr>
<th>Specifications of Initial Designed IPMSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Stator outer diameter</td>
</tr>
<tr>
<td>Rotor outer diameter</td>
</tr>
<tr>
<td>Stack length</td>
</tr>
<tr>
<td>Air-gap</td>
</tr>
<tr>
<td>Br (@120°C)</td>
</tr>
<tr>
<td>Number of poles</td>
</tr>
<tr>
<td>DC link voltage</td>
</tr>
<tr>
<td>Rated output power</td>
</tr>
<tr>
<td>Rated current</td>
</tr>
<tr>
<td>Base and maximum speed</td>
</tr>
</tbody>
</table>

Fig. 1 Configuration of initial designed IPMSM
Equivalent circuits for the characteristic analysis of the IPMSM are shown in Fig. 2 [4]. The equivalent circuits include the effects of the copper loss and the iron loss.

(a) d-axis

(b) q-axis

Fig. 2 Equivalent circuits of IPMSM

From Fig. 2, the voltage and effective torque equation of the IPMSM in the steady-state are expressed as follows:

\[V_d = r_s + P \lambda_d - w_o \lambda_q \]
(1)

\[V_q = r_s + P \lambda_q + w_o \lambda_d \]
(2)

\[\lambda_q = (L_d + L_{msq}) \]
(3)

\[\lambda_d = (L_q + L_{mqs}) \]
(4)

\[T = P n [\psi_d \alpha_{eq} + (L_d - L_q) \psi_d \alpha_{eq}] \]
(5)

Where \(i_d, i_q \) : d and q-axis components of armature current; \(\lambda_q, \lambda_d \) : d and q- axis component of iron loss current; \(v_d, v_q \) : d,q component of terminal voltage; \(\psi_d, (\sqrt{3}/2) \psi_f, \psi_f \) : Maximum flux linkage of permanent magnet; \(R_s \) : armature winding resistance; \(R_c \) : iron loss resistance; \(L_d, L_q \) : inductance along d-axis and q-axis; \(P_n \) : number of pole pairs.

III. PARAMETER CALCULATION METHOD AND INITIAL CONDITIONS FOR OPTIMIZATION

There are four parameters, \(\psi_a, R_a, R_c, L_d \) and \(L_q \) needed to solve the circuit models of Fig. 2. In this paper, the estimation method on two parameters of them, iron loss resistance and inductances, is introduced, and then the characteristics of the initial model obtained by the circuits based on the parameters are finally displayed in Section V.

A. Equivalent Iron Loss Resistance, \(R_c \)

Fig. 3 shows the procedure of iron loss calculation using iron loss data of magnetic material.

B. Inductances, \(L_d \) and \(L_q \)

\[R_c = \frac{v_o^2}{w_{total}} \]
(6)

where \(v_o \) is terminal voltage at the no load and 1000 rpm.

\[L_d = \frac{\psi_o \cos \alpha - \psi_a}{i_d}, \quad L_q = \frac{\psi_o \sin \alpha}{i_q} \]
(7)

where \(\psi_o \) : total flux linkage considering the armature reaction effects; \(\alpha \) : phase difference between \(\psi_a \) and \(\psi_o \).
C. Results of Initial Model by Characteristic Equation

The characteristics of the initial model are predicted with L_d and L_q estimated through the way mentioned above. At this time, the limitations on armature current and terminal voltage are considered as (8) and (9), and in this stage, all the losses except the copper loss are ignored.

\[
I_a = \sqrt{i_d^2 + i_q^2} \leq I_{am}
\]

(8)

\[
V_a = \sqrt{v_d^2 + v_q^2} \leq V_{am}
\]

(9)

where I_{am}, V_{am}: peak values of current and voltage.

The entire torque-speed operation region considering the above control conditions is acquired as the following manner. In the anterior region of base speed, maximum torque per ampere control is used, and flux weakening control is applied in the posterior region. In the end, the characteristics obtained from the initial model satisfy the specifications given in Table I, and torque ripple at the base and maximum speed and peak value of cogging torque are 22 %, 184 % and 4.03 Nm respectively. At that time, input current is 64.2 A and 63.1 A, and β is 39.2o and 80.6o, and the optimization process of the IPMSM is based on these results.

IV. OPTIMIZATION

A. Design Variables for Optimization

In the IPMSM, the operating limits, restrictions on current and terminal voltage, and CPSR critically depend on the motor parameters such as flux linkage generated by permanent magnet and inductance [7]. Therefore, in the initial model, the size and position of permanent magnet and air-gap length are not changed, because they greatly affect the parameters. Due to fill factor, the teeth and yoke width are not altered as well. Thus, design variables selected in this paper are barrier angle (BA), chamfer (C), slot opening (SO). Fig. 5, the magnified figure of the part surrounded a dotted line in Fig. 1, shows them.

\[
\begin{align*}
\text{Fig. 5 Design variables for optimization} \\
\end{align*}
\]
TABLE II

Array of 2^3 FFD and Results

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>BA[\text{mm}] (level)</th>
<th>C[\text{mm}] (level)</th>
<th>SO[\text{mm}] (level)</th>
<th>BA*C (level)</th>
<th>BA*SO (level)</th>
<th>C*SO (level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34.5(-1)</td>
<td>0.5(-1)</td>
<td>4(-1)</td>
<td>(+1)</td>
<td>(+1)</td>
<td>(+1)</td>
</tr>
<tr>
<td>2</td>
<td>145.5(+1)</td>
<td>0.5(-1)</td>
<td>4(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>3</td>
<td>34.5(-1)</td>
<td>1.5(+1)</td>
<td>4(-1)</td>
<td>(+1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>4</td>
<td>145.5(+1)</td>
<td>1.5(+1)</td>
<td>4(-1)</td>
<td>(-1)</td>
<td>(+1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>5</td>
<td>34.5(-1)</td>
<td>0.5(-1)</td>
<td>8(+1)</td>
<td>(+1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>6</td>
<td>145.5(+1)</td>
<td>0.5(-1)</td>
<td>8(+1)</td>
<td>(-1)</td>
<td>(+1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>7</td>
<td>34.5(-1)</td>
<td>1.5(+1)</td>
<td>8(+1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(+1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex No.</th>
<th>Torque ripple[%] @ base speed</th>
<th>Torque ripple[%] @ max. speed</th>
<th>Cogging T_{p-p} [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.2</td>
<td>108.2</td>
<td>0.88</td>
</tr>
<tr>
<td>2</td>
<td>22.8</td>
<td>109.4</td>
<td>8.76</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
<td>46.0</td>
<td>4.44</td>
</tr>
<tr>
<td>4</td>
<td>17.2</td>
<td>49.0</td>
<td>4.63</td>
</tr>
<tr>
<td>5</td>
<td>8.6</td>
<td>79.8</td>
<td>1.19</td>
</tr>
<tr>
<td>6</td>
<td>10.3</td>
<td>91.3</td>
<td>6.86</td>
</tr>
<tr>
<td>8</td>
<td>11.2</td>
<td>38.6</td>
<td>6.56</td>
</tr>
<tr>
<td>9</td>
<td>14.8</td>
<td>90.2</td>
<td>1.61</td>
</tr>
</tbody>
</table>

C. RSM

RSM is a set of statistical and mathematical techniques to find the “best fitted” response of the physical system through experiment or simulation. It has recently been recognized as an effective approach for modeling the performance of electrical devices. In RSM, a polynomial model called a fitted model is generally to be constructed to represent the relationship between the performance and design parameters [9]. Thus, this model provides designers with an overall prospect of the performance according to the behavior of the factors in a design space. In this paper, RSM is employed to make appropriate response models with respect to torque ripple and cogging torque in the initial designed IPMSM. In general, the response model can be written as follows:

\[Y = \beta_0 + \sum_{i=1}^{k} \beta_1 x_i + \sum_{i=1}^{k} \beta_2 x_i^2 + \sum_{i=1}^{k} \beta_3 x_i x_j + \xi \] \hspace{1cm} (13)

Where \(\beta \) is regression coefficients for design variables, \(\xi \) is random error treated statistical error.

In this paper, least square method is utilized to estimate unknown coefficients, and the fitted coefficients and the fitted response model can be written as:

\[\hat{\beta} = (X^T X)^{-1} X^T Y \] \hspace{1cm} (14)

Where \(X \): matrix notation of the levels of the independent variables; \(X^T \): transpose of the matrix \(X \); \(Y \): vector of the observations.

Central composite design (CCD) is employed as the experimental design method to estimate the fitted model of each response [9]. CCD consists of three portions: a complete \(2^3 \) factorial design in which the factor levels are coded into \(-1\) and \(1\); axial points at a distance \(\alpha \) from the center point; one design center point. Table VII shows the design area of CCD based on FFD results. At that time, the width of SO is restricted to 9 mm to support coil in the slot.

From the above stated process, the polynomial models of the responses are given by (15), (16) and (17) respectively

\[V_{Tr_{\text{base}}} = 48.4 + 0.16 \times \text{BA} - 17.9 \times C - 6.4 \times \text{SO} - 0.02 \times \text{BA}^2 + 4.1 \times C^2 \]
\[+ 0.1 \times \text{SO}^2 - 0.04 \times \text{BA} \times C + 0.008 \times \text{BA} \times \text{SO} + 1.7 \times \text{C} \times \text{SO} \] \hspace{1cm} (15)
Table III

<table>
<thead>
<tr>
<th>Design factors</th>
<th>Levels of design factors</th>
<th>Levels of design factors</th>
<th>Levels of design factors</th>
<th>Levels of design factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-α</td>
<td>-1</td>
<td>0</td>
<td>1 α</td>
</tr>
<tr>
<td>BA [°]</td>
<td>25.25</td>
<td>29</td>
<td>34.5</td>
<td>40</td>
</tr>
<tr>
<td>C [mm]</td>
<td>0.16</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>SO [mm]</td>
<td>5.32</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Table VI

<table>
<thead>
<tr>
<th>Design Factors torque</th>
<th>Optimal point @ base speed</th>
<th>Optimal point @ max. speed</th>
<th>Optimal point @ cogging</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA [°]</td>
<td>25.25</td>
<td>25.25</td>
<td>43.75</td>
</tr>
<tr>
<td>C [mm]</td>
<td>0.53</td>
<td>1.84</td>
<td>0.5</td>
</tr>
<tr>
<td>SO [mm]</td>
<td>8.68</td>
<td>8.68</td>
<td>8.68</td>
</tr>
</tbody>
</table>

\[
Y_{Tr_{\text{max}}} = 145.8 + 2.1 \times BA - 140.5 \times C + 7.4 \times SO - 0.03 \times BA^2 + 5.7 \times C^2 - 2.6 \times SO^2 - 0.3 \times BAC + 0.1 \times BASO + 12.2 \times CSO \tag{16}
\]

\[
Y_{CT} = 11.7 + 0.3 \times BA - 3.8 \times C + 2.4 \times SO + 0.003 \times BA^2 + 2.5 \times C^2 - 0.1 \times SO^2 + 0.02 \times BAC - 0.03 \times BASO + 0.3 \times CSO \tag{17}
\]

Table III displays the optimal points minimizing each response obtained by (14), (15) and (16), and Fig. 7 shows the results of each model corresponding to the point. As known in the results, the optimal conditions can not simultaneously minimize torque ripple at the base and maximum speed and cogging torque. Moreover, each optimal point with respect to torque ripple at the maximum speed and cogging torque is located contrastively. That means the appropriate trade-off is required according to the application of IPMSM. As SO is 8.68 mm, the variation of each response is shown in Fig. 8.

In each optimal point, the results from the polynomial models are compared with those of FEA in Table IX. From the comparison, the models are very useful to predict the responses in the region. That is also verified by the coefficient of determination called R^2 [9], [10]. It is the statistics index to evaluate the quality of the models. R^2 of each fitted model are 0.985, 0.996 and 0.927 respectively.

V. Characteristic Analysis of Losses

When the optimization is performed in Section IV, the losses is not considered. Thus, if the losses is considered, the results of Table IX is not guaranteed because input current and β may be vary. In this Section, the characteristics of initial and optimal models are examined and analyzed when all the losses are considered.

A. Characteristic Prediction

The losses must be estimated to get the characteristic of each model. In this paper, R_c is calculated with the method proposed in Section III, and mechanical loss of all the models is the same and proportional to the square of mechanical speed [4]. At that time, the mechanical loss at 1000 rpm is standard, and it is defined as 0.5% of rated output power. Table X shows final results of each model considering the losses. The characteristic of the optimal model at the maximum speed is somewhat different as compared with other models. That is generated because of decrease of flux linkage by the chamfer. Therefore, as the optimization is performed at the maximum speed, the restrictions are required to satisfy the characteristics given in the specifications.

B. Torque Characteristic of Each Model

The torque waveform at the base and maximum speed and cogging torque of each model are shown in Fig. 9 and Fig. 10. At the base speed, the conditions, input current and β, of initial model are not greatly changed as compared with the original that because the influence of mechanical and iron loss is small. However, β of the optimized models considerably varies due to the decrease of back-EMF. So, torque ripple displayed in Fig. 9 differs from those given in Table IX.
VI. CONCLUSION

In this paper, an optimization method was proposed to improve torque performance of the IPMSM with concentrated winding and wide speed range, and the results by the method showed the optimization shape in each speed region is different. Moreover, as the optimal design is performed at the maximum speed, the particular care is required. Finally, the optimization direction of the IPMSM with concentrated winding operated in the wide speed range must be changed according to the application of the IPSMS.

ACKNOWLEDGMENT

The authors are grateful to A. Fadaie, E. Baradar and V. Darvish from Sharif University, for their thorough observations. They also wish to thank Prof. M. Isapour and A. R. Gholipour from Lasckosch Research group and Prof. H. Lesani from University of Tehran for their insightful ideas and comments.

REFERENCES

Mehdi K. Zadeh was born in Dezfool, Iran, on January 2, 1983. He received the B.Sc. degree from the Electrical Engineering Faculty of the University of Tehran Sh., Tehran, Iran, in 2007, in Communication Engineering. He is presently a graduate student working towards his Master’s degree at the University of Tehran, in Power Electronics Engineering. He is member of power systems and machines research lab in Department of Electrical Engineering in University of Tehran.

His research interests are related to control of Electrical Drives, Power Electronics, FACTS, and Finite Element Method for Analysis of Electrical Machines and HVDC.

Ehsan M. Siavashi was born in Sari, Iran, on April 5, 1984. He received the B.Sc. degree from the Electrical Engineering Faculty of the Khajeh Nasir Toosi University of Technology (KNTU), Tehran, Iran, in 2007, in Electronic Engineering. He is presently a graduate student working towards his Master’s degree at the University of Tehran, in Power Electronics Engineering. He is member of power systems research lab in Department of Electrical Engineering in University of Tehran.

His main scientific interests are related to Power Electronics, Control of Electrical Drives, FACTS, Parameter and State Estimation and Adaptive Algorithms.