An Application of Differential Subordination to Analytic Functions

Sukhwinder Singh Billing, Sushma Gupta and Sukhjit Singh Dhaliwal

Abstract—In the present paper, using the technique of differential subordination, we obtain certain results for analytic functions defined by a multiplier transformation in the open unit disc \(E = \{ z : |z| < 1 \} \). We claim that our results extend and generalize the existing results in this particular direction.

Keywords—Analytic function, Differential subordination, Multiplier transformation.

I. INTRODUCTION

Let \(A_p \) denote the class of functions of the form

\[
f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad p \in \mathbb{N} = \{1, 2, 3, \ldots\},
\]

which are analytic in the open unit disc \(E = \{ z : |z| < 1 \} \).

We write \(A_1 = A \).

A function \(f \in A \) is said to be starlike of order \(0 \leq \alpha < 1 \) if it satisfies the condition

\[
\Re \left(\frac{zf'(z)}{f(z)} \right) > 1, \quad z \in E.
\]

Let \(S^* \) denote the class of starlike functions of order \(\alpha \). We write \(S^*(0) = S^* \), therefore, \(S^* \) is the class of starlike functions (w.r.t. origin).

For \(f \in A_p \), we define the multiplier transformation \(l_p(n, \alpha) \) as

\[
l_p(n, \alpha)[f](z) = z^p + \sum_{k=p+1}^{\infty} (k + \alpha)^n a_k z^k, \quad (\alpha > 0, n \in \mathbb{Z}).
\]

The operator \(l_p(n, \alpha) \) has been recently studied by Aghalary et al. [9]. Earlier, the operator \(l_1(n, \alpha) \) was investigated by Cho and Srivastava [7] and Cho and Kim [8], whereas the operator \(l_1(n, 1) \) was studied by Uralgaddi and Somanatha [1].

\(l_1(n, 0) \) is the well-known Såhlöw ([5]) derivative operator \(D^n \), defined as:

\[
D^n[f](z) = z + \sum_{k=2}^{\infty} k^n a_k z^k,
\]

where \(n \in \mathbb{N}_0 = \mathbb{N} \cup \{ 0 \} \) and \(f \in A \).

A function \(f \in A \) is said to belong to the class \(S_n(\alpha) \) if it satisfies the condition

\[
\Re \left(\frac{D^{n+1}[f](z)}{D^n[f](z)} \right) > 1, \quad z \in E.
\]

In 1989, the class \(S_n(\alpha) \) has been studied by Owa, Shen and Obradović [10].

Uralgaddi [2] proved if \(f(z) = z + \alpha_m z^{m+1} + \alpha_{m+2} z^{m+2} + \cdots \in S_n(\alpha) \) for some \(m, n \in \mathbb{N} \), then

\[
\Re \left(\frac{D^{n+1}[f](z)}{D^n[f](z)} \right) > 1, \quad z \in E.
\]

Recently, Li and Owa [6], proved the following results:

Theorem 1.1: Let \(f(z) = z + \alpha_m z^{m+1} + \alpha_{m+2} z^{m+2} + \cdots \) be analytic in \(E \) and satisfy the condition

\[
\Re \left(\frac{D^{n+1}[f](z)}{D^n[f](z)} \right) > \frac{2 - m(n+1)}{2}, \quad z \in E
\]

for some \(m \in \mathbb{N} \) and \(n \in \mathbb{N}_0 \). Then

\[
\Re \left(\frac{D^{n+1}[f](z)}{D^n[f](z)} \right) > \frac{2 - m(n+1)}{2}, \quad z \in E
\]

Theorem 1.2: If \(f(z) = z + \alpha_m z^{m+1} + \alpha_{m+2} z^{m+2} + \cdots \in S_n(\alpha) \) for some \(0 \leq \alpha < 1, n \in \mathbb{N}_0 \) and \(m \in \mathbb{N} \), then for any \(0 < \leq \frac{2(1 - \alpha)}{2(1 - \alpha)m}, \) the sharp estimate is

\[
\Re \left(\frac{D^{n+1}[f](z)}{D^n[f](z)} \right) > \frac{2 - m(n-1)}{m}, \quad z \in E.
\]

The main objective of the present paper is to generalize certain existing results stated above using differential subordination and find the corresponding generalized results for multiplier transformation \(l_p(n, \alpha) \) in the subordination form.

II. PRELIMINARIES

We shall need the following definitions and lemmas to prove our results.

Definition 2.1: Let \(f \) and \(g \) be analytic in \(E \). We say that \(f \) is subordinate to \(g \) in \(E \), written as \(f(z) \prec g(z) \) in \(E \), if \(g \) is univalent in \(E \), \(f(0) = g(0) \) and \(f'(z) \in g'(E) \).

Definition 2.2: Let \(: \mathbb{C}^2 \times E \rightarrow \mathbb{C} \) and let \(h \) be univalent in \(E \). If \(p \) is analytic in \(E \) and satisfies the differential subordination

\[
(p(z), zp'(z); h(z)) \prec (p(0), 0; h(0)), \quad (p(0), 0; h(0)) = h(0), \quad (1)
\]
then \(p \) is called a solution of the differential subordination (1). The univalent function \(q \) is called a dominant of the differential subordination (1) if \(p < q \) for all \(p \) satisfying (1). A dominant \(\hat{q} \) that satisfies \(\hat{q} < q \) for all dominants \(q \) of (1), is said to be the best dominant of (1).

Definition 2.3: A function \(L(z, t) \), \(z \in \mathbb{E} \) and \(t \geq 0 \) is said to be a subordination chain if \(L(z, t) \) is analytic and univalent in \(\mathbb{E} \) for all \(t \geq 0 \), \(L(z, t) \) is continuously differentiable on \([0, \infty)\) for all \(z \in \mathbb{E} \) and \(L(z, t_1) < L(z, t_2) \) for all \(0 \leq t_1 < t_2 \).

Lemma 2.4: ([13, page 159]). The function \(L(z, t) = \lim_{t \to \infty} a_1(t)z + \cdots \) with \(a_1(t) \neq 0 \) for all \(t \geq 0 \), and \(\lim_{t \to \infty} a_1(t) = \infty \), is said to be a subordination chain if and only if \(\Re \left[\frac{z L / \bar{z}}{L / x} \right] > 0 \) for all \(z \in \mathbb{E} \) and \(t \geq 0 \).

Lemma 2.5: ([12]). Let \(F \) be analytic in \(\mathbb{E} \) and let \(G \) be analytic and univalent in \(\mathbb{E} \) except for points \(\sigma \) such that \(\lim_{z \to \sigma} G(z) = \infty \), with \(F(0) = G(0) \). If \(F \neq G \) in \(\mathbb{E} \), then there is a point \(z_0 \in \mathbb{E} \) and \(\sigma \in \mathbb{E} \) (boundary of \(\mathbb{E} \)) such that \(F(z) - G(z) < G(\zeta) \), \(F(z_0) = G(0) \) and \(z_0 F'(z_0) = m \sigma G'(\sigma) \) for some \(m \geq 1 \).

III. MAIN RESULTS

The following result is essentially due to Miller and Mocanu [13, page 76]. For the completeness of our results, we also prove it here with an alternative proof using subordination chain.

Theorem 3.1: Let \(q, q(z) \neq 0, z \in \mathbb{E} \), be a univalent function such that \(\frac{Q'(z)}{Q(z)} = \hat{q}(z) \) is starlike in \(\mathbb{E} \). If an analytic function \(P, P(z) \neq 0, z \in \mathbb{E} \), satisfies the differential subordination

\[
\frac{z P'(z)}{P(z)} < \frac{Q'(z)}{Q(z)} = h(z), \tag{2}
\]

then

\[P < q = \exp \left[\int_0^z \frac{h(t)}{t} dt \right]. \]

and \(q \) is the best dominant.

Proof: Let us define \(h \) as

\[h(z) = \frac{Q'(z)}{Q(z)}, \quad z \in \mathbb{E}. \tag{3} \]

Since \(h \) is starlike and hence univalent in \(\mathbb{E} \). The subordination in (2) is, therefore, well-defined in \(\mathbb{E} \).

We need to show that \(P < q \). Suppose to the contrary that \(P \neq q \) in \(\mathbb{E} \). Then by Lemma 2.5, there exist points \(z_0 \in \mathbb{E} \) and \(\sigma \in \mathbb{E} \) such that \(P(z_0) = q(\sigma) \) and \(\sigma P'(z_0) = m \sigma q'(\sigma), m \geq 1 \). Then

\[
\frac{z_0 P'(z_0)}{P(z_0)} = \frac{m \sigma q'(\sigma)}{q(\sigma)}, \quad z \in \mathbb{E}. \tag{4}
\]

Consider a function

\[L(z, t) = (1 + t) \frac{Q'(z)}{Q(z)}, \quad z \in \mathbb{E}. \tag{5} \]

The function \(L(z, t) \) is analytic in \(\mathbb{E} \) for all \(t > 0 \) and is continuously differentiable on \([0, \infty)\) for all \(z \in \mathbb{E} \). Now,

\[a_1(t) = \frac{(L(z, t))}{z} \right|_{t_0} = (1 + t) \frac{q'(0)}{q(0)}. \]

As \(q \) is univalent in \(\mathbb{E} \), so \(q(0) \neq 0 \). Therefore, it follows that \(a_1(t) \neq 0 \) and \(\lim_{t \to \infty} |a_1(t)| = \infty \). A simple calculation yields

\[
\frac{z L / \bar{z}}{L / t} = (1 + t) \frac{z Q'(z)}{Q(z)}, \quad z \in \mathbb{E},
\]

where \(Q(z) = \frac{z Q'(z)}{Q(z)} \). Since \(Q \) is starlike in \(\mathbb{E} \) and \(t \geq 0 \). Therefore, we obtain

\[
\Re \left[\frac{z L / \bar{z}}{L / t} \right] > 0, \quad z \in \mathbb{E}.
\]

Hence, in view of Lemma 2.4, \(L(z, t) \) is a subordination chain. Therefore, \(L(z, t_1) < L(z, t_2) \) for \(0 \leq t_1 \leq t_2 \). From (5), we have \(L(z, 0) = h(z) \), thus we deduce that \(L(0, t) \neq h(\mathbb{E}) \) for \(|z| = 1 \) and \(t \geq 0 \). In view of (4) and (5), we can write

\[
\frac{z_0 P'(z_0)}{P(z_0)} = L(0, m - 1) \neq h(\mathbb{E}),
\]

where \(z_0 \in \mathbb{E}, |z_0| = 1 \) and \(m = 1 \), which is a contradiction to (2).

Hence,

\[P < q = \exp \left[\int_0^z \frac{h(t)}{t} dt \right]. \]

This completes the proof of the theorem.

Theorem 3.2: Let \(h \) be starlike univalent in \(\mathbb{E} \) with \(h(0) = 0 \). Let \(F \in \mathcal{A}_p \) satisfy

\[
\frac{I_p(n \cdot, f(z))}{I_p(n \cdot, f(z))} - 1 < h(z), \quad z \in \mathbb{E}, \tag{6}
\]

then

\[
\left(\frac{I_p(n \cdot, f(z))}{z^p} \right)^\beta < q(z) = \exp \left[\left(1 - \frac{h(t)}{t} \right) dt \right],
\]

for \(z \in \mathbb{E}, p > 0 \). The function \(q \) is the best dominant.

Proof: Let us write

\[
\left(\frac{I_p(n \cdot, f(z))}{z^p} \right)^\beta = r(z), \quad z \in \mathbb{E}. \tag{7}
\]

Differentiate (7) logarithmically, we obtain

\[
\frac{z I_p(n \cdot, f(z))}{I_p(n \cdot, f(z))} - p = \frac{z r'(z)}{r(z)}, \quad z \in \mathbb{E}. \tag{8}
\]

A little calculation yields the following equality

\[
I_p(n \cdot, f(z)) = (p + 1) I_p(n \cdot, f(z)) - I_p(n \cdot, f(z)). \tag{9}
\]

By making use of (9), from (6) and (8), we have

\[
\frac{I_p(n \cdot, f(z))}{I_p(n \cdot, f(z))} - 1 = \frac{1}{p + 1} \frac{z r'(z)}{r(z)} < h(z).
\]
As \(p \in \mathbb{N} \), \(\rho > 0 \) and by our assumption, \((\alpha + p) > 0 \). Now in view of Theorem 3.1, we obtain
\[
\left(\frac{l_p(n)}{z^p} \right)^{\alpha} r(z) < q(z), \quad z \in \mathbb{E},
\]
where \(q(z) = \exp \left[(\alpha + p) \int_0^z \frac{h(t)}{t} \, dt \right], \) it completes the proof.

IV. APPLICATIONS TO ANALYTIC FUNCTIONS

For \(h(z) = \frac{2(1 - |z|^2)z}{1 - z} \), where \(\alpha \neq 1 \), is a real number. It is easy to check that \(h \) is starlike in \(\mathbb{E} \). When we make this selection of \(h \) in Theorem 3.2, we get the following result.

Corollary 4.1. If \(f \in A_p \) satisfies
\[
\frac{l_p(n+1)}{l_p(n)} \frac{|f(z)|}{|f|} < \frac{1 + (1 - 2\alpha)z}{1 - z}, \quad z \in \mathbb{E},
\]
then
\[
\left(\frac{l_p(n)}{z^p} \right)^{\alpha} < (1 - z)^{2(\alpha - 1)(\alpha + p)}, \quad z \in \mathbb{E},
\]
where \(\alpha \neq 1, \quad > 0 \), are real numbers.

If we put \(p = 1, \quad = 0 \) in Corollary 4.1, we have the following result.

Corollary 4.2. If \(f \in A \) satisfies
\[
\frac{D^{m+1}[f]}{D^m[f]} \frac{|f(z)|}{|f(z)|} < \frac{1 + (1 - 2\alpha)z}{1 - z}, \quad z \in \mathbb{E},
\]
then
\[
\left(\frac{D^{m}[f]}{z} \right)^{\alpha} < (1 - z)^{2(\alpha - 1)/\alpha - 1}, \quad z \in \mathbb{E},
\]
where \(\alpha \neq 1, \quad > 0 \), are real numbers.

Remark 4.3. The result in Corollary 4.2, is a generalization of the above stated Theorem 1.2, for \(m = 1 \), due to Li and Owa [6].

Remark 4.4. For \(\alpha = \frac{1}{n+1} \) and \(\alpha = \frac{1}{n+1} \), in Corollary 4.2, we obtain the above stated Theorem 1.1, for \(m = 1 \), of Li and Owa [6] in subordination form which is more general than its existing form.

When we select \(\alpha = \frac{1}{n+1} \), in Corollary 4.2, we obtain the following result.

Corollary 4.5. If \(f \in S_n(\cdot) \), then
\[
\left(\frac{D^{m-1}[f]}{z} \right)^{\frac{1}{m}} < (1 - z)^{2(\alpha - 1)/\alpha + 1}, \quad z \in \mathbb{E},
\]
where \(\alpha \neq 1 \), is real number.

Remark 4.6. The result in Corollary 4.5, sharpens the result of Uralegaddi [2] and generalizes the result of Li and Owa [6]. For \(= 0 \), in Corollary 4.5, we obtain the Corollary 1, due to Li and Owa [6] for \(m = 1 \), in subordination form which is more general than its existing form.

If we select, \(n = 0 \) in Corollary 4.2, we have the following result.

Corollary 4.7. If \(f \in A \) satisfies
\[
\frac{Z'(z)}{Z(z)} < \frac{1 + (1 - 2\alpha)z}{1 - z}, \quad z \in \mathbb{E},
\]
then
\[
\left(\frac{f(z)}{z} \right)^{\alpha} < (1 - z)^{2\alpha(\alpha - 1)}, \quad z \in \mathbb{E},
\]
where \(\alpha \neq 1, \quad > 0 \), are real numbers.

Remark 4.8. The result in Corollary 4.7, is more general than the result due Miller and Mocanu [11], Golusin [4] and Li and Owa [6], which can be obtained by selecting \(= 0 \) and \(= \frac{1}{2} \).

REFERENCES

