Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

Maohai Li, Bingrong Hong, Zesu Cai and Ronghua Luo

Abstract—This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through posterior by sampling new poses that integrate the current observation combined with unscented Kalman filter (UKF) to extending the path mapping (SLAM) using monocular vision. The particle filter is particle filter (RBPF) for mobile robot simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.

Keywords—Mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.

I. INTRODUCTION

A key prerequisite for a truly autonomous robot is that it can simultaneously localize itself and accurately map its surroundings [1]. The problem of achieving this is one of the most active areas in mobile robotics research, which is known as Simultaneous Localization and Mapping (SLAM). One of the popular successful attempts at the SLAM problem was the extended Kalman filter (EKF)[2,3]. One of the limitations of the EKF is their computational complexity [4]. The standard EKF approach requires time quadratic in the number of features in the map for each incremental update. The other is that it requires that features in the environment be uniquely identifiable, otherwise this can cause excessive data association difficulty [5]. Recently, particle filters have been at the core of solutions to higher dimensional robot problems such as SLAM, which, when phrased as a state estimation problem. Murphy

Manuscript received March 12, 2006. This research is supported by the National Natural Science Foundation of China (69985002) and the National Hi-Tech Research and Development Program of China (2002AA735041).

Maohai Li is with the Department of Computer Science and Technology, Harbin Institute of Technology, CO 150001 China (e-mail: limaohai@hit.edu.cn).

Bingrong Hong is with the Department of Computer Science and Technology, Harbin Institute of Technology, CO 150001 China.

Zesu Cai is with the Department of Computer Science and Technology, Harbin Institute of Technology, CO 150001 China.

Ronghua Luo is with the Department of Computer Science and Technology, Harbin Institute of Technology, CO 150001 China.

adopted Rao-Blackwellised particle filters (RBPF) [6] as an effective way of representing alternative hypotheses on robot paths and associated maps. Montemerlo et al. [7] extended this method to efficient landmark-based SLAM using Gaussian representations of the landmarks and were the first to successfully implement it on real robots. More recently, RBPF is used widely to build map [8,9,10]. Dailey describe the application of FastSLAM using a trinocular stereo camera [11]. Se et al. [12] demonstrate the use of Scale Invariant Feature Transform (SIFT) point features as landmarks for the SLAM problem using a trinocular stereo camera. Davison et al. [13] demonstrate a single-camera SLAM algorithm capable of learning a set of 3D point features. Most of these vision-based methods use the stereo camera to obtain strictly the 3D feature, and the association problem either between features in successive camera frames or between observed features and map features is solved ambiguously.

In this paper we present an investigation into the use of monocular vision for SLAM in indoor environment with 3D feature landmarks, which are structured from the SIFT feature matching pairs. These 2D SIFT features are used to structure 3D landmarks because they are invariant to image scale, rotation and translation as well as partially invariant to illumination changes and affine or 3D projection, and their description is implemented with multi-dimensional vector [14]. This combination can result in many highly distinctive landmarks from environment, which simplifies the data association problem to only distinguishing unique landmarks. We presents a fast and efficient algorithm for matching features in a KD-Tree in the time cost of $O(\log^2 N)$ [15]. Following [6,7], our approach applies RBPF to estimate a posterior of the path of the robot, where each particle has associated with it an entire map, in which each landmark is estimated and updated by the unscented Kalman filter (UKF) [16], and UKF is used to sample new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. Furthermore, the number of resampling steps is determined adaptively [17], which seriously reduces the particle depletion problem, and introducing the Evolution strategies (ES) for avoiding particle impoverishment [18]. All of these specialties can make data association in this paper more robust than other methods, and the built precise map only need a small number of particles.

The paper is organized as follows: In the next section, the RBPF for SLAM problem is briefly reviewed, and then the novel RBPF method is described in detail, and section 3
provides a detailed implementation for monocular vision-based SLAM in unknown indoor environment. Experiment results and discussions are presented in section 4 with conclusion in section 5.

II. NOVEL RAO-BLACKWELLIZED PARTICLE FILTER FOR SLAM

Consider the case of a mobile robot moving through an unknown environment consisted of a set of landmarks. The landmark \(n \) is denoted by \(\theta_n \). The robot moves according to a known probabilistic motion model \(p(s_{t+1}|u_t, s_t, \theta) \), where \(s_t \) denotes the robot state at time \(t \), and the control input \(u_t \) carried out in the time interval \([t-1, t]\). As the robot moves around, it takes measurements \(z_t \) of its environment through observation model \(p(z_t|s_t, \theta, n) \), where \(\theta \) is the set of all landmarks and \(n_i \) is the index of the particular landmark observed at time \(t \). The SLAM problem is to recover the posterior distribution \(p(s_t, \theta|z_{1:t}) \), where \(M \) is the number of landmarks observed so far and the notation \(s' \) denotes \(s_1, \ldots, s_M \) (and similarly for other variables). In [6], Murphy et al. provide an implementation of RBPF for SLAM:

\[
p(s', \theta, u|z', u', n') = p(s' | z', u', n') \prod_{i=1}^{M} p(\theta_n | s', z', n'). \tag{1}
\]

This can be done efficiently, since the factorization decouples the SLAM problem into a path estimation problem and individual conditional landmark location problems, and the quantity \(p(\theta_n|s', z', n') \) can be computed analytically once \(s' \) and \(z' \) are known, and the amount of computation needed for each incremental update stays constant, regardless of the path length. Each map is constructed given \(z' \) and the trajectory \(s' \) represented by the corresponding particle. Each particle is of the form \(s^{(i)}_t = s^{(i)}_{1:t}, \mu_{1:t}, \Sigma_{1:t} = \mu_{1:t}, \Sigma_{1:t}^{(i)} \), where \((i)\) indicates the index of the particle; \(s^{(i)}_t \) is its path estimate, \(\mu^{(i)}_t \) and \(\Sigma_{1:t}^{(i)} \) are the mean and variance of the Gaussian representing the \(t \)-th landmark location. Our novel RBPF update is performed in the following steps:

![Fig. 1 Moving the samples in the prior to regions of high likelihood](image)

A. Sampling New Poses Using UKF

Here we need to calculate the posterior over robot paths \(p(s'|u', z', n') \) approximated by a particle filter. Each particle in the filter represents one possible robot path \(s' \) from time 0 to time \(t \). Since the map landmark estimates \(p(\theta_n|s', z', n') \) depend on the robot path, the particles sampling step is very important. However, most methods use the state transition prior \(p(s|u, s, n) \) to draw particles. Because the state transition does not take into account the most recent observation \(z_t \), especially when the likelihood happens to lie in one of the tails of the prior distribution or if it is too narrow, as showed in Fig. 1. If an insufficient number of particles are employed, there may be a lack of particles in the vicinity of the correct state, leading to divergence of the filter. This is known as the particles depletion problem.

In our methods, the \(i \)-th new pose \(s^{(i)}_{t+1} \) is drawn from the posterior \(p(s^{(i)}_{t+1}|u', z', n') \), which takes the measurement \(z_t \) into consideration, along with the landmark \(n_i \) and \(s^{(i)}_{t+1} \) is the path up to time \(t+1 \) of the \(i \)-th particle. An effective approach to accomplish this, is to use the unscented transformation (UT) generated Gaussian approximation:

\[
p(s_i|s^{(i-1)}_t, u', z', n') \sim N(s_i; \tilde{s}_i^{(i)}, P^{(i)}_t), \quad i = 1, 2, \ldots, N. \tag{2}
\]

UT can compute the mean and covariance up to the third order of the Taylor series expansion of the nonlinear observation function \(g(\theta, z) \). Let \(L \) be the dimension of \(s_t \), the UT computes mean and covariance as follows:

1) Deterministically generate \(2L+1 \) sigma points \(S_0 = \{\chi_0, W_i\} \):

\[
\begin{align*}
\chi_0 &= \tilde{s}_{t-1}, &\chi_i &= \tilde{s}_{t-1} + \sqrt{(L+\gamma)L_0} P_{t-1}, &i &= 1, \ldots, L, \\
\chi_i &= \tilde{s}_{t-1} - \sqrt{(L+\gamma)L_0} P_{t-1}, &i &= L + 1, \ldots, 2L. \tag{3}
\end{align*}
\]

\[
W_0^i = \lambda(L + \gamma), \quad W_i^i = W_0^i + (1 - \alpha^2 + \beta), \quad W_i^i = 1/(2 \cdot (L + \gamma)) - L. \tag{4}
\]

Where \(\gamma \) is a scaling parameter that controls the distance between the sigma points and the mean \(\tilde{s}_t \), \(\alpha \) is a positive scaling parameter that controls the higher order effects resulted from the non-linear function \(g \), \(\beta \) is a parameter that controls the weighting of the 0-th sigma point. \(\alpha = 0, \beta = 0 \) and \(\gamma = 2 \) are the optimal values for the scalar case. \((\sqrt{(L+\gamma)L_0} P_{t-1})^{i}\) is the \(i \)-th column of the matrix square root.

2) Propagate the sigma points through the nonlinear transformation:

\[
Z_i = g(\theta, \chi_i), \quad i = 0, \ldots, 2L. \tag{5}
\]

3) Compute the mean and covariance of \(Z_i \) as follows:

\[
\tilde{z}_i = \sum_{i=0}^{2L} W_i^i Z_i, \quad P_{\tilde{z}_i} = \sum_{i=0}^{2L} W_i^i (Z_i - \tilde{z}_i)(Z_i - \tilde{z}_i)^T. \tag{6}
\]

Now we follow UKF algorithm to extend the path \(s^{(i)}_{t+1} \) by sampling the new poses \(s^{(i)}_{t+1} \) from the posterior \(p(s^{(i)}_{t+1}|u', z', n') \):

1) Calculate the sigma points:

\[
\chi_{t+1}^{(i)} = \{\tilde{s}_{t+1}^{(i)}, \tilde{s}_{t+1}^{(i)} + \sqrt{(L+\gamma)L_0} P_{\tilde{z}_t}^{(i)}\}. \tag{7}
\]

2) Using motion model to predict:
\[Z_{t+1}^{(i)} = f(Z_{t+1}^{(i)}, u_{t}^{(i)}), \quad z_{t+1}^{(i)} = \sum_{j=0}^{2L} W_{j}^{m(i)} Z_{t+1}^{(i)}, \]
\[p_{t+1}^{(i)} = \sum_{j=0}^{2L} W_{j}^{m(i)} [Z_{t+1}^{(i)} - z_{t+1}^{(i)}] [Z_{t+1}^{(i)} - z_{t+1}^{(i)}]^T. \]

3) Incorporating new observation \(z_t \):

\[Z_{t+1}^{(i)} = g(Z_{t+1}^{(i)}, \theta_t), \quad z_{t}^{(i)} = \sum_{j=0}^{2L} W_{j}^{m(i)} Z_{t+1}^{(i)}, \]
\[p_{t+1}^{(i)} = \sum_{j=0}^{2L} W_{j}^{m(i)} [Z_{t+1}^{(i)} - z_{t}^{(i)}] [Z_{t+1}^{(i)} - z_{t}^{(i)}]^T, \]
\[K_{t}^{(i)} = P_{t+1}^{(i)} (P_{t+1}^{(i)})^{-1}, \quad S_{t}^{(i)} = Z_{t+1}^{(i)} + K_{t}^{(i)} (z_{t}^{(i)} - z_{t}^{(i)}), \]
\[P_{t}^{(i)} = P_{t+1}^{(i)} - K_{t}^{(i)} P_{t+1}^{(i)} K_{t}^{T}. \]

4) Sampling new pose \(s_t^{(i)} \) and extending the path \(s_t^{(i)} \):

\[s_t^{(i)} \sim N(s_t, \Sigma_t^{(i)}), \quad s_t^{(i)} = N(s_t, \Sigma_t^{(i)}), \]
\[s_t^{(i)} = (s_{t-1}^{(i)}, \mu_n^{(i)}). \]

\section*{B. Updating The Observed Landmark Estimate}

In this step, we update the posterior over the landmark estimates represented by the mean \(\mu_n^{(i)} \) and the covariance \(\Sigma_n^{(i)} \). The updated values \(\mu_n^{(i)} \) and \(\Sigma_n^{(i)} \) are then added to the temporary particle set \(\psi_t \) along with the new sampling pose \(s_t^{(i)} \). The update depends on whether or not a landmark \(n \) was observed at time \(t \). For \(n \neq n_0 \), the posterior over the landmark remains unchanged: \(\mu_n^{(i)} = \mu_n^{(i)}, \quad \Sigma_n^{(i)} = \Sigma_n^{(i)} \). For the observed feature \(n = n_0 \), the update is specified through the following Equations:

\[p(\theta_n | s_{t}^{(i)}, n', z') = \frac{p(z_t | \theta_n, s_{t}^{(i)}, n', z')^{(i)}}{p(z_t | s_{t}^{(i)}, n', z')^{(i)}} \]
\[= \frac{\eta p(z_t | \theta_n, s_{t}^{(i)}, n, z') p(\theta_n | s_{t}^{(i)}, n', z')}{-N(s_t^{(i)}, \theta_n^{(i)}, \Sigma_n^{(i)})}. \]

The probability \(p(\theta_n | s_{t}^{(i)}, n', z') \) at time \(t-1 \) is represented by a Gaussian with mean \(\mu_n^{(i)} \) and covariance \(\Sigma_n^{(i)} \). For the new estimate at time \(t \) to also be Gaussian, we need generate Gaussian approximation for the perceptual model \(p(z_t | \theta_n, s_t^{(i)}) \). Our methods also use UT to approximate the non-linear measurement function \(g(\theta_n, s_t^{(i)}) \):

1) Calculate the mean points:

\[z_{n-t+1}^{(i)} = \{ \mu_n^{(i)}, \lambda_n^{(i)} \} + \sqrt{(L + \lambda)} \Sigma_n^{(i)}. \]

2) Using observation model to compute the mean and covariance of the observation as follows:

\[Z_{t+1}^{(i)} = g(z_{n-t+1}^{(i)}, s_t^{(i)}), \quad z_{t}^{(i)} = \sum_{j=0}^{2L} W_{j}^{m(i)} Z_{t+1}^{(i)}, \]
\[p_{t}^{(i)} = \sum_{j=0}^{2L} W_{j}^{m(i)} [Z_{t+1}^{(i)} - z_{t}^{(i)}] [Z_{t+1}^{(i)} - z_{t}^{(i)}]^T. \]

3) Under this approximation, the posterior for the location of landmark \(n_t \) is indeed Gaussian. The new mean and covariance are obtained using the following measurement update:

\[K_{t}^{(i)} = \Sigma_n^{(i)} (I - K_{t}^{(i)} P_{t}^{(i)} K_{t}^{T})^{-1}, \]
\[\mu_n^{(i)} = \mu_n^{(i)} + K_{t}^{(i)} (z_{t}^{(i)} - z_{t}^{(i)}), \]
\[\Sigma_n^{(i)} = (I - K_{t}^{(i)} P_{t}^{(i)} K_{t}^{T}) \Sigma_n^{(i)}. \]

\section*{C. Adaptive Resampling}

Next, we resample from temporary set of particles \(\psi_t \), then form the new particle set \(\psi_t \). Resampling is a common technique in particle filtering to correct for such mismatches, and avoiding particles degeneracy. By weighing particles in \(\psi_t \) and resampling according to those weights, the resulting particle set indeed approximates the target distribution. After the resampling, all particle weights are then reset to \(1/N \). However, resampling can delete good particles from the sample set, in the worst case, the filter diverges. Accordingly, it is important to find a criterion when to perform a resampling step. Liu [19] introduced the so-called number of particles \(N_{eff}^{(i)} \) to estimate how well the current particle set represents the true posterior. Our approach determines whether or not a resampling should be carried out according to \(N_{eff}^{(i)} \). We resample each time \(N_{eff}^{(i)} \) drops below a given threshold which was set to 0.6N where \(N \) is the number of particles. In our experiments we found that this technique drastically reduces the risk of replacing good particles, because the resampling operations are only performed when needed.

\section*{D. Introducing Evolution Strategy}

The resampling step described before helps to avoid particle degeneracy, but also leads to an undesirable loss of particle diversity as resampling may result in multiple copies of only a few or, in the limit, only one particle. In this case, there is a severe depletion of samples. In order to introduce sample variety after resampling without affecting the validity of the approximation, we introduce the ES. Because the evolution operator can search for optimal particles, the sampling process is more efficient and the number of particles required to represent the posterior density can be reduced considerably. The two operators: crossover and mutation, work directly over the floating-points to avoid the trouble brought by binary coding and decoding. The crossover and mutation operator are defined as following:

Crossover: select two parent particles \((s^{(p_1)}, s^{(p_2)}) \) and \((s^{(p_3)}, s^{(p_4)}) \) randomly from population \(\psi_t \), the crossover operator mates them by the following equation to generate two children particles:

\[\psi_s = \frac{1}{2} (s^{(p_1)} + s^{(p_2)}) + \frac{1}{2} (s^{(p_3)} + s^{(p_4)}). \]
\[\begin{align*}
\hat{s}^{(c)}_1 &= \lambda \hat{s}^{(p)}_1 + (1 - \lambda) s^{(2)} + \tau, \quad w^{(c)}_1 = p(z_1 | s^{(c)}_1) \\
\hat{s}^{(c)}_2 &= \lambda \hat{s}^{(p)}_2 + (1 - \lambda) s^{(2)} + \tau, \quad w^{(c)}_2 = p(z_2 | s^{(c)}_2).
\end{align*} \tag{17} \\
\]

Where \(\kappa \sim U[0,1] \), \(\tau \sim N(0,\Sigma) \), and \(U[0,1] \) represents uniform distribution and \(N(0,\Sigma) \) the normal distribution. Then, replace the parents \(\{s^{(p)}_1, s^{(p)}_2\} \) by their children \(\{\hat{s}^{(c)}_1, \hat{s}^{(c)}_2\} \) according to the following criterion: The child \(s^{(c)}_i \) would be accepted if \(p(z_1 | s^{(c)}_i) > \max(p(z_1 | s^{(p)}_1), p(z_1 | s^{(p)}_2)) \) value, else would be accepted with probability \(\text{Hata! Hata!} \). In the similar form is accepted or rejected the child \(s^{(c)}_2 \).

Mutation: select one parent particle \((s^{(p)}, w^{(p)}) \), the mutation operator on it is defined as following:

\[s^{(c)}_i = s^{(p)} + \sigma, \quad w^{(c)}_i = p(z_i | s^{(c)}_i), \quad \sigma \sim N(0,\Sigma). \tag{18} \]

Then, the new particle \(s^{(c)}_i \) is accepted if \(p(z_1 | s^{(c)}_i) > p(z_1 | s^{(p)}) \), else is accepted with probability \(p(z_1 | s^{(c)}_i) / p(z_1 | s^{(p)}) \).

For more efficient, the crossover operator will perform adaptively with probability \(p_c \), and mutation operator will perform adaptively with probability \(p_m \):

\[
\begin{align*}
 p_c &= \begin{cases}
 p_{c1} = \frac{(p_{c1} - p_{c2})(f_c - f_{\text{avg}})}{f_{\text{max}} - f_{\text{avg}}}, & f_c \geq f_{\text{avg}}, \\
 p_{c2}, & f_c < f_{\text{avg}}.
\end{cases} \\
 p_m &= \begin{cases}
 p_{m1} = \frac{(p_{m1} - p_{m2})(f_m - f_{\text{avg}})}{f_{\text{max}} - f_{\text{avg}}}, & f_m \geq f_{\text{avg}}, \\
 p_{m2}, & f_m < f_{\text{avg}}.
\end{cases}
\end{align*} \tag{19} \\
\]

Where \(f_{\text{max}} \) is the biggest fitness value in the population, and \(f_{\text{avg}} \) is the fitness average value, \(f_c \) is the bigger fitness value of two crossover individuals, \(f_m \) is the fitness value of mutation individual. In this paper, we set \(p_{c1} = 0.85, p_{c2} = 0.65, p_{m1} = 0.1, \) and \(p_{m2} = 0.001 \).

III. IMPLEMENTATION DETAILS OF USING MONOCULAR VISION

A. SIFT Feature Extraction

The Scale Invariant Feature Transform (SIFT) was proposed in [14] as a method of extracting and describing key-points, which are robustly invariant to common image transforms. The SIFT algorithm has four major stages: 1) Scale-space extrema detection. 3) Orientation assignment. 4) Key-point descriptor. An important aspect of the algorithm is that it generates a large number of highly distinctive features over a broad range of scales and locations. The number of features generated is dependent on image size and content, as well as algorithm parameters. For a more detailed discussion see [14]. In this paper, we use the vectors with 128 elements as key-point descriptor. Fig. 2 shows an example of SIFT feature extraction.

B. KD-Tree Based Feature Matching

This section describes KD-tree algorithm for determining the matched SIFT feature pairs of successive images captured at relatively close positions along the robot’s path by a monocular vision system. Given a SIFT key-points set \(E \), and a target key-point vector \(d \), then a nearest neighbor of \(d \) is defined as:

\[
\forall d'' \in E, |d'' - d| < |d'' - d''|, \quad |d - d'| = \sqrt{\sum_{i=1}^{2}(d_i - d'_i)^2}. \tag{20} \\
\]

Where \(d_i \) is the \(i \)-th component of \(d \).

We implement the SIFT key-points matching algorithm which based on nearest neighbor search algorithm in a KD-tree,
this section, we use these feature pairs to structure the 3D spatial landmarks, which are in a single world model. Let \(p_1(u_1, v_1) \) and \(p_2(u_2, v_2) \) be the matching pair that observed from two different viewpoints, and \(p_1, p_2 \) associate the 3D spatial point landmark \(P(X_u, Y_u, Z_u) \), as shown in Fig. 4, using the pinhole camera model:

\[
\begin{align*}
 z_i [u_i, v_i, 1]^T &= \mathbf{M} [X_u, Y_u, Z_u, 1]^T, \quad (22) \\
 z_2 [u_2, v_2, 1]^T &= \mathbf{M} [X_u, Y_u, Z_u, 1]^T. \quad (23)
\end{align*}
\]

The solution of three unknown variants \(X_u, Y_u \) and \(Z_u \) can be obtained through the least square method, and the projection matrices \(\mathbf{M} \) obtained is:

\[
\mathbf{M} = \begin{bmatrix}
 \alpha_x & 0 & u_0 & 0 \\
 0 & \alpha_y & v_0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
 R & T \\
 0^T & 1
\end{bmatrix}. \quad (24)
\]

Where motion model provides extrinsic camera rotations \(\mathbf{R} \) and translations \(\mathbf{T} \) for each image. Offline calibration [23] yields the camera’s intrinsic parameters \(\alpha_x, \alpha_y, u_0, v_0 \) as shown in Table 1.

D. Motion Model

The motion model \(p(s|u_0, s_0) \) predicts the movement and status over time of the robot. As shown in previous methods, velocity at time \(t, \Delta T \) is the time step and \(\epsilon \) is noise in terms of a normal distribution \(\mathcal{N}(0, \sigma) \).

E. Observation Model

Every time the robot is triggered, the CCD camera vision system captures the consecutive digital images and after SIFT feature extracting, matching current observed SIFT feature with the map database contained with 3D spatial natural landmarks through KD-tree based nearest neighbor search algorithm. Let \(F^m = \{ f_1, ..., f_m \} \) be the \(k \) SIFT feature key-points observed at time \(t \), in which there are \(n \) key-points matching with the 3D landmarks in the map database: \(n_i^m = \{ f_{1}^i, ..., f_{j}^i, ..., f_{n}^i \} \), and there are \(m \) key-points matching the 2D SIFT feature key-points which observed at time \(t-1 \) and are not reconstructed and added to the map database: \(n_i^{m+1} = \{ f_{1}^{i+1}, ..., f_{j}^{i+1}, ..., f_{n}^{i+1} \} \). Then the likelihood of the observation \(z_i \) being obtained is:

\[
p(z_i | s_0^{(i)}, \theta, n_i) = p(z_i | s_0^{(i)}, \theta, n_i^m) \quad (26)
\]

Where \(z_i^{m} \) represents the observation \(F^m = \{ f_1, ..., f_m \} \), and \(z_i^{m+1} \) represents the observation \(F_{m+1} = \{ f_1^{i+1}, ..., f_m^{i+1} \} \), \(p(z_i | s_0^{(i)}, n_i^m) \) represents the likelihood of the observation \(z_i \), given the matching relation \(n_i^m \), and \(p(z_i | s_0^{(i)}, n_i^{m+1}) \) represents the likelihood of the observation \(z_i \) given the matching relation \(n_i^{m+1} \), these two likelihood can be calculated separately as follows:

\[
\begin{align*}
 \ln p(z_i | s_0^{(i)}, \theta) &= \sum_{i=1}^{n} \ln p(f_j | s_0^{(i)}, L_g) \quad (27) \\
 \ln p(z_i | s_0^{(i)}, \theta) &= \sum_{i=m+1}^{n} \ln p(f_j | s_0^{(i)}, V_g) \quad (28)
\end{align*}
\]

Where \(p(f_j | s_0^{(i)}, L_g) \) represents the likelihood of the observation being \(f_j \) when robot at pose \(s_0^{(i)} \) observing the landmark \(L_g \), and \(p(f_j | s_0^{(i)}, V_g) \) represents the likelihood of the observation being \(f_j \) when robot at pose \(s_0^{(i)} \) observing the SIFT feature \(V_g \). Let the 3D coordinates of the landmark \(L_g \) be \((x_w, y_w, z_w)^{s_0^{(i)}} \), then we can obtain \(\ln p(f_j | s_0^{(i)}, L_g) \) as follows:

\[
\ln p(f_j | s_0^{(i)}, L_g) = -0.5 \min(T_{ij}, I_T) S^{-1}(T_{ij} - I_T), \quad (29)
\]

Where \(J \) is the Jacobian matrix of the observation equation, \(G_g \) is the covariance of \(L_g \). The maximum observation innovation \(T_i \) is constant (in our case, 3, 0), which is selected so as to prevent outlier observations from significantly affecting the observation likelihood.

While the feature \(V_g \) has no 3D spatial information, \(\ln p(f_j | s_0^{(i)}, V_g) \) is only calculated according to epipolar constraint:

\[
\ln p(f_j | s_0^{(i)}, V_g) = -0.5 (\text{dist}(I_j, H_g) + \text{dist}(I_g, H_j)), \quad (30)
\]
Where \(I_f \) is the image coordinate of the feature \(V_f \), \(H_f \) is the epipolar line on the image plane corresponding to \(V_f \) at time \(t \), and \(H_j \) is the epipolar line on the image plane corresponding to the feature \(f_j \) at time \(t-1 \), \(\text{dist}(\cdot) \) is the function of the distance between point and line.

After calculating the observation model \(p(z_i|s_{i}^{(t)},\theta,n_i) \), which can be used to evaluate the \(i \)-th particle weight \(w_i^{(t)} \), and \(w_i^{(t)} \) is taken as the fitness value in evolutionary process:

\[
W_i^{(t)} = \frac{p(z_i|s_{i}^{(t)},\theta,n_i)}{\sum_{j=1}^{N} p(z_i|s_{j}^{(t)},\theta,n_j)}.
\] (31)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are performed on a Pioneer 3-DX mobile robot incorporating an 800 MHz Intel Pentium processor as shown in Fig. 5a. Motor control is performed on the on-board computer, while a 3 GHz PC connected to the robot by a wireless link provides the main processing power for vision processing and the SLAM software. A monocular color CCD camera mounted at the front of the robot is used for detecting the landmarks. The test environment is a robot laboratory with limited space shown in Fig. 5b.

For illustrating the advantages of our methods over previous approaches, we implement SLAM with our novel RBPF and previous method. The experiment is described as follows.

Firstly, the robot is set at the distance of 2m from the lab wall, and the robot orientation is parallel with the wall, at the same time, let the CCD camera vision face with the wall. While the robot is moving ahead, the image frames are captured and processed, building the map of the wall. Fig. 6 shows some frames of size 320×240 (38 frames in total). At the end, a total of 1468 SIFT landmarks with 3D positions are gathered in the map, which are relative to the initial coordinates frame.

Fig. 7 shows the experiment results. In the map, ‘S’ represents the start point of robot path, and ‘E’ represents the end point of robot path, the red point represents the path particle, the 2D view of 3D landmarks in the map is represented with blue points. As shown in Fig. 7 (1), if we increase the number of particles, the performance of conventional RBPF will be improved largely, however, the storage requirement and calculation burden is severely aggravated, owning to each particle associated with a view of the map. Fig. 7 (2) shows the built map with the novel RBPF, which adopts separately 50 particles and 100 particles, and 8 evolutionary steps. For executing the evolution strategies, the most particles can be convergent to the region high weight, and approximate the posterior only with few particles. The performance of the novel RBPF changes a little with increasing the number of particles, specifically, we can build precise map only with few particles. The more detail comparison of performance with different numbers of particles is shown as Fig. 8, obviously, the robot pose and landmark estimation error is largely reduced, and we only need a few particles to reach remarkable results by means of incorporating current observation and thinking about evolution strategy and adaptive resampling, as well as the effective management structure based on Kd-tree. However, ES step can aggravate the computation burden, this negative impact can be largely reduced for less and less particles with the running process. The results are compared with previous methods indicate superior performance of presented method.
Another experiment was carried out in our single lab room, where the compact map is built with our method, and 186 image frames of size 320×240 are captured. Fig. 9 shows the bird’s-eye view of the 3D spatial map.

V. CONCLUSION

This article described a novel algorithm for SLAM problem using monocular CCD camera. Like many previously published SLAM algorithms, our method calculates posterior probability distributions over 3D SIFT featured maps and robot locations. It does so recursively based on a key property of the SLAM problem: the conditional independence of feature estimates given the vehicle path. This conditional independence gives rise to a factored representation of the posterior using a combination of particle filters for estimating the robot path and UKF for estimating the map. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing ES step after the resampling for avoiding particle impoverishment. Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches.

REFERENCES