A Tabu Search Heuristic for Scratch-Pad Memory Management

Maha IDRISI AOUAD, René SCHOTT, and Olivier ZENDRA

Abstract—Reducing energy consumption of embedded systems requires careful memory management. It has been shown that Scratch-Pad Memories (SPMs) are low size, low cost, efficient (i.e., energy saving) data structures directly managed at the software level. In this paper, the focus is on heuristic methods for SPMs management. A method is efficient if the number of accesses to SPM is as large as possible and if all available space (i.e., bits) is used. A Tabu Search (TS) approach for memory management is proposed which is, to the best of our knowledge, a new original alternative to the best known existing heuristic (BEH). In fact, experimentations performed on benchmarks show that the Tabu Search method is as efficient as BEH (in terms of energy consumption) but BEH requires a sorting which can be computationally expensive for a large amount of data. TS is easy to implement and since no sorting is necessary, unlike BEH, the corresponding sorting time is saved. In addition to that, in a dynamic perspective where the maximum capacity of the SPM is not known in advance, the TS heuristic will perform better than BEH.

Keywords—Energy consumption, memory allocation management, optimization, Tabu Search heuristic.

I. INTRODUCTION

EMBEDDED systems are everywhere. Due to technology evolution, these systems must integrate more complex functionalities (video, audio, Internet, videophone, etc.) which needs more and more battery and memory.

Depending on that, memory will become the major energy consumer in an embedded system. Numerous options to economize energy, hence increase autonomy, exist. These various approaches can be classified in two main categories: hardware optimizations and software optimizations. Hardware techniques fall beyond the scope of this paper, but a large amount of literature about them is available (see first parts of [1]). In this paper, the focus will be on software optimizations. Some techniques and algorithms, synthesized in [2], try to optimally allocate application code and/or data to one memory kind called Scratch-Pad Memory in order to reduce the energy consumption of embedded systems.

Cache memory is random access memory (RAM) that a computer microprocessor can access more quickly than it can access regular RAM. As the microprocessor processes data, it looks first in the cache memory and if it finds the data there (from a previous reading of data), it does not have to do the more time-consuming reading of data from larger memory [3]. Cache memories, although they help a lot with program speed, do not always fit in embedded systems: they increase the system size and its energy cost (cache area plus managing logic).

Scratch-Pad Memory (SPM), also known as scatchpad RAM or local store in computer terminology, is a high-speed internal memory used for temporary storage of calculations, data, and other work in progress. In reference to a microprocessor, SPM refers to a special high-speed memory circuit used to hold small items of data for rapid retrieval. It can be considered as similar to an L1 cache in that it is the memory next closest to the ALU’s after the internal registers, with explicit instructions to move data from and to main memory. Like caches so, SPMs consist of small, fast SRAM, but the main difference between them is that SPMs are directly and explicitly managed at the software level, either by the developer or by the compiler, whereas caches require extra dedicated circuits. SPM’s software management makes it more predictable (by avoiding cache miss cases which is an important feature in real-time embedded systems). Compared to cache, SPM thus has several advantages [4]. SPM requires up to 40% less energy and 34% less area than cache [5]. Further, the run-time with an SPM using a simple static knapsack-based [5] allocation algorithm is 18% better as compared to a cache. Contrarily to [5], [6] distinguish between static and dynamic energy. They also show the effectiveness of using an SPM in a memory architecture where a saving about 35% in energy consumption is achieved when compared to a memory architecture without an SPM. [7] use statistical methods and the Independent Reference Model (IRM) to prove that SPMs, with an optimal mapping based on access probabilities, will always outperform the direct-mapped cache, irrespective of the layout influencing the cache behavior.

The rest of the paper is organized as follows. Section II describes some existing heuristics for managing memory data allocation. Section III explain the presented approach based on a Tabu Search heuristic to find the optimized memory data allocation in order to reduce energy consumption. Section IV gives the memory energy consumption model proposed in order to estimate the energy consumed by the different heuristics. Section V shows the experimental results obtained. Finally, Section VI concludes and gives some perspectives.
II. EXISTING HEURISTICS

In general, authors try to answer the following question: which kind of application data should be allocated to which kind of memory? In order to solve this problem, data placement could be guided on one hand by the features of the considered memory (access speed, energy cost, large number of miss access cases, etc.), and on the other hand by the information collected either statistically by analyzing the benchmark’s code or dynamically by profiling benchmarks (number of times that data is accessed, data size, access frequency, etc.). Due to the reduced size of SPMs, one tries to optimally allocate data in it in order to realize energy savings. Thus, most of the authors use one of these three following strategies.

Allocate data into SPM by size: the smaller data are allocated into SPM as there is space available else they are allocated in main memory (DRAM). This method has the advantage of being simple to implement since it only considers the size of the data but has the disadvantage of allocating the largest data in the DRAM. These largest data could be often accessed, which will imply a very few energy economy.

Allocate data into SPM by number of accesses: the most frequently accessed/used data are allocated into SPM as there is space available else they are allocated in DRAM. This strategy is optimal than the previous one, since the most frequently accessed/used data will be allocated in a memory that consumes less energy and therefore will achieve more savings as explained and demonstrated in [8] and [9]. However, granularity problems can be noted in some cases such as a structure with only one part is often accessed/used.

Allocate data memory into SPM by number of accesses and size (BEH): this is somehow a combination of the two previous strategies. The idea here is to combine their advantages. If the example of a structure in which only a part is the most frequently accessed/used is considered, the average number of access to this structure is taken into account. This avoids granularity problems. Here, data are sorted according to their ratio (access number/size) in descending order. The data with the highest ratio is allocated first into SPM as there is space available. Otherwise it is allocated in DRAM. This heuristic uses a sorting method which can be computationally expensive for a large amount of data. In addition to that, this sorting method will not work very well in a dynamic perspective where the maximum capacity of the SPM is not known in advance. This is, so far, the best known existing heuristic (BEH).

In the rest of this paper, it will be referred to the strategy BEH as a basis for memory energy optimizations.

III. TABU SEARCH APPROACH

The problem trying to be solved is a combinatorial optimization problem like the famous knapsack problem [10].

Generate an initial solution.
loop
Identify neighborhood set.
Identify tabu set.
Identify aspirant set.
Choose the best move.
exit when goal is satisfied or the stopping condition is reached.
end loop

Suppose memory is a big knapsack and data are items. The knapsack is filled such that it can hold a total weight of W with some combination of items from a list of N possible items each with weight w_i and value v_i so that the value of the items packed into the knapsack is maximized. This problem has a single linear constraint, a linear objective function which sums the values of the items in the knapsack, and the added restriction that each item will be in the knapsack or not. If N is the total number of items, then there are 2^N subsets of the item collection. So an exhaustive search for a solution to this problem generally takes exponential running time. Therefore, the obvious brute-force approach is infeasible. Here, the problem is investigated using the Tabu Search method.

In this paper, a heuristic based on the Tabu Search approach is proposed to solve the problem of optimizing the memory data allocation. This heuristic is an alternative to the best known existing heuristic (BEH) presented in Section II. Tabu Search (TS) is a local search metaheuristic introduced by Glover (1986). Details about Tabu Search can be found in [11]. TS explores the solution space by moving at each iteration from a solution s to the best solution in a subset of its neighborhood N(s). Contrary to classical descent methods, the current solution may deteriorate from one iteration to the next. New, poorer solutions are accepted only to avoid paths already investigated. This insures new regions of a problem solution space will be investigated with the goal of avoiding local minima and ultimately finding the desired solution. To avoid cycling, solutions possessing some attributes of recently explored solutions are temporarily declared tabu or forbidden.

The duration that an attribute remains tabu is called its tabu tenure, and it can vary over different intervals of time. The tabu status can be overridden if certain conditions are met; this is called the aspiration criterion and it happens, for example, when a tabu solution is better than any previously seen solution. Finally, various techniques are often employed to diversify or to intensify the search process. A generic Tabu Search algorithm is summarized in Figure 1.

The memory (SPM) is filled such that it can hold a maximum capacity of C with a combination of data from a list of N possible data each with size s_i and access number a_i so that the access number of the data allocated into SPM is maximized. In the implemented TS algorithm,
an initial solution is first generated randomly. If N is the total number of data, then a solution is just a finite sequence s of N terms such that $s[n]$ is either 0 or the size of the n_{th} data. $s[n] = 0$ if and only if the n_{th} data is not selected in the solution. This solution must satisfy the constraint of not exceeding the maximum SPM capacity (i.e. $\sum_{i=1}^{N} s[i] \leq C$). A maximum number of iterations and a lifespan on the tabu list are also set. Initially, the optimal solution equals the initial solution, the optimal access number is the access number of the initial solution and the tabu list is empty. As long as the number of iterations is not exceeded, the following is repeated:

- The e^{th} neighborhood of the current solution is generated.
- A new matrix containing the neighboring vectors is computed.
- Based on the solutions contained in this matrix, a vector of corresponding current size values and a vector of corresponding current access number values are calculated.
- Best solution are kept from neighborhood.
- The tabu list is updated to make a transition back to the old solution impossible for a period.
- Finally, update is performed if this new access number is better than the existing optimal access number.

IV. MEMORY ENERGY ESTIMATION MODEL

In order to compute the energy cost of the system for each configuration, in this section, an energy consumption estimation model is proposed for the considered memory architecture composed by an SPM, a DRAM and an instruction cache memory. In this model, the distinction is done between the two cache write policies: write-through and write-back. In a Write-Through cache (WT), every write to the cache causes a synchronous write to the DRAM. Alternatively, in a Write-Back cache (WB), writes are not immediately mirrored to the main memory. Instead, the cache tracks which of its locations have been written over and marks these locations as dirty. The data in these locations is written back to the DRAM when those data are evicted from the cache [3]. The proposed energy consumption estimation model is presented below:

$$E = E_{spm} + E_{icr} + E_{dram}$$

$$E = N_{spmr} \times E_{spmr}$$

$$+ N_{spmw} \times E_{spmw}$$

$$+ \sum_{k=1}^{N_{icr}} [h_{ik} \times E_{icr} + (1 - h_{ik}) \times [E_{dramr} + E_{icw}$$

$$+ (1 - W_{P_i}) \times DB_{ik} \times (E_{icr} + E_{dramw})]]$$

$$+ N_{icw} \times W_{P_i} \times E_{dramw} + h_{ik} \times E_{icw} + (1 - W_{P_i}) \times$$

$$[1 - h_{ik}] \times [E_{icw} + DB_{ik} \times (E_{icr} + E_{dramw})]]$$

$$+ N_{dramr} \times E_{dramr}$$

$$+ N_{dramw} \times E_{dramw}$$

Lines (1) and (2) represent respectively the total energy consumed during a reading and during a writing into DRAM. Lines (3) and (4) represent respectively the total energy consumed during a reading from instruction cache. Lines (5) and (6) represent respectively the total energy consumed during a writing from/into instruction cache. When, lines (3) and (4) represent respectively the total energy consumed during a reading and during a writing from/into DRAM. The various terms used in the energy consumption estimation model are explained in Table I.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{spm}</td>
<td>Total energy consumed in SPM.</td>
</tr>
<tr>
<td>E_{icr}</td>
<td>Total energy consumed in instruction cache.</td>
</tr>
<tr>
<td>E_{dram}</td>
<td>Total energy consumed in DRAM.</td>
</tr>
<tr>
<td>E_{spmr}</td>
<td>Energy consumed during a reading from SPM.</td>
</tr>
<tr>
<td>E_{spmw}</td>
<td>Energy consumed during a writing into SPM.</td>
</tr>
<tr>
<td>N_{spmr}</td>
<td>Reading access number to SPM.</td>
</tr>
<tr>
<td>N_{spmw}</td>
<td>Writing access number to SPM.</td>
</tr>
<tr>
<td>E_{icw}</td>
<td>Energy consumed during a reading from instruction cache.</td>
</tr>
<tr>
<td>E_{dramw}</td>
<td>Energy consumed during a writing into instruction cache.</td>
</tr>
<tr>
<td>N_{icw}</td>
<td>Reading access number to instruction cache.</td>
</tr>
<tr>
<td>N_{dramw}</td>
<td>Writing access number to instruction cache.</td>
</tr>
<tr>
<td>W_{P_i}</td>
<td>The considered cache write policy: WT or WB.</td>
</tr>
<tr>
<td>DB_{ik}</td>
<td>Dirty Bit used in case of WB to indicate during the access</td>
</tr>
<tr>
<td></td>
<td>k if the instruction cache line has been modified before</td>
</tr>
<tr>
<td></td>
<td>$(DB_i = 1)$ or not $(DB_i = 0)$.</td>
</tr>
<tr>
<td>h_{ik}</td>
<td>Type of the access k to the instruction cache.</td>
</tr>
</tbody>
</table>

V. EXPERIMENTAL RESULTS

For experiments, a memory architecture composed by a Scratch-Pad Memory, a main memory (DRAM) and an instruction cache memory is considered. Similar features for the cache memory and the SPM are taken in order to compare their energy performance fairly. Experiments were performed with eleven benchmarks from six different suites: MiBench [12], SNU-RT, Mälardalen, Mediabensch, Spec 2000 and Wcet Benchs. Table II gives a description of these benchmarks.

In order to compute the energy cost of the system for each configuration, the developed energy consumption estimation model presented in Section IV was used. This model is based on the OTAWA framework [13] to collect information about number of accesses and on the energy consumption estimation tool CACTI [14] in order to collect information about energy per access to each kind of memory. OTAWA (Open Tool for Adaptive WCET Analysis) is a framework of C++ classes dedicated to static analyses of programs in machine code and to the computation of Worst Case Execution Time (WCET). OTAWA is freely available (under the LGPL license) and is designed to support different architectures like PowerPC, ARM or M68HC. In this case, the focus is on PowerPC architectures. In this model, the distinction is done between the two cache write policies: Write-Through (WT) and Write-Back (WB) as explained...
TABLE II

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Suite</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sha</td>
<td>MiBench</td>
<td>The secure hash algorithm that produces a 160-bit message digest for a given input.</td>
</tr>
<tr>
<td>Bitcount</td>
<td>MiBench</td>
<td>Tests the bit manipulation abilities of a processor by counting the number of bits in an array of integers.</td>
</tr>
<tr>
<td>Fr</td>
<td>SNU-RT</td>
<td>Finite impulse response filter (signal processing algorithms) over a 700 item long sample.</td>
</tr>
<tr>
<td>Jdctint</td>
<td>SNU-RT</td>
<td>Discrete-cosine transformation on 8x8 pixel block.</td>
</tr>
<tr>
<td>Adpcm</td>
<td>Malardalen</td>
<td>Adaptive pulse code modulation algorithm.</td>
</tr>
<tr>
<td>Cnt</td>
<td>Malardalen</td>
<td>Counts non-negative numbers in a matrix.</td>
</tr>
<tr>
<td>Compress</td>
<td>Malardalen</td>
<td>Data compression using lzw.</td>
</tr>
<tr>
<td>Djpeg</td>
<td>MediaBenchs</td>
<td>JPEG decoding.</td>
</tr>
<tr>
<td>Gzip</td>
<td>Spec 2000</td>
<td>Compression.</td>
</tr>
<tr>
<td>Nsichneu</td>
<td>Wcet Benchs</td>
<td>Simulate an extended Petri net. Automatically generated code with more than 250 if-statements.</td>
</tr>
<tr>
<td>Statemate</td>
<td>Wcet Benchs</td>
<td>Automatically generated code.</td>
</tr>
</tbody>
</table>

before. The presented Tabu Search algorithm and the BEH strategy have been implemented with the C language on a PC Intel Core 2 Duo, with a 2.66 GHz processor and 3 Gbytes of memory running under Mandriva Linux 2008.

In experiments, 30 different executions for the Tabu Search heuristic are generated as the solution given differs from an execution to another. TS Mean refers to the average results obtained on these 30 executions. In contrast, TS Best refers to the best solution obtained from the thirty executions performed. For BEH, the solution founded does not change from a running to another one.

Figure 2, presents the results obtained when comparing BEH and TS methods on the standard ANR benchmarks assuming the write-back cache policy. In the following, as the shape of curves obtained when comparing BEH and TS methods on the ANR benchmarks assuming the Write-Through cache policy (WT) or the Write-Back cache policy (WB) are slightly the same, just the results obtained with the write-back cache policy are plotted. Knowing that $E_{WT\ mode} \neq E_{WB\ mode}$.

As it can be seen from this figure, TS Best achieves the same performance as BEH on energy savings on the standard ANR benchmarks. In addition to that, TS Mean produces nearly the same energy gains. It has been shown that saving more energy is not possible as BEH already gives the optimal solution thanks to a developed backtracking algorithm. This is true for the standard ANR benchmarks used as they contain uniform data leading to a big number of local minima. Thus, in order to put some trouble in the BEH strategy and see if it still gives the best solution, it was decided to modify slightly these benchmarks. Concretely, the modification consists in adding only one variable to each benchmark. This variable performs an output and is big enough to provide relevant energy savings if it is selected for a Scratch-Pad Memory allocation. A modified benchmark is referred to as benchmarkCE.

Figure 3 presents the energy consumed in the modified benchmarks assuming the write-back cache policy. Reminding that $E_{WT\ mode} \neq E_{WB\ mode}$.

As it can be noticed from this figure, although the modified benchmarks were used, the same energy savings as before are still obtained. The BEH strategy didn’t give the optimal solution anymore as one could expect as proven by a developed backtracking algorithm. This is normal due to the fact that BEH is a sort of access number/size of data as it was explained in Section II. The variable added in each benchmark has a given access number/size (this ratio depends on the data profiling of each benchmark) so that this variable is not a priority in the sorting made by the BEH method. This is done on purpose so that when it will be the turn of this variable to be treated by BEH, the remaining space in the SPM will not be enough to take this variable and hence it will be allocated in main memory. Whereas, an optimal solution would be to start by allocating this variable first into the SPM. It can be seen that the Tabu Search heuristic gives the same results as BEH on the modified ANR benchmarks. As this
problem is a combinatorial optimization problem (NP-hard problem), an exhaustive search for a solution generally takes exponential running time. Therefore, the obvious brute-force approach is infeasible. That’s why, investigating the problem using evolutionary algorithms and, more specifically, genetic methods will be planned in the future.

VI. CONCLUDING REMARKS AND FURTHER RESEARCH ASPECTS

In this paper, a general energy consumption estimation model have been proposed. This model is able to be adapted to different memory architecture configurations. A Tabu Search heuristic (TS) for memory allocation management has also been proposed. TS is a new original alternative to the best known existing method (BEH). It was shown that the TS heuristic is as efficient as BEH in terms of energy consumption. TS is easy to implement and since no sorting is necessary, unlike BEH, the corresponding sorting time is saved. In addition to that, in a dynamic perspective where the maximum capacity of the SPM is not known in advance, TS heuristic will perform better than BEH. In future work, evolutionary heuristics (Genetic Algorithms, Markov Decision Processes, Simulated Annealing, ANT method, Particle Swarm technique, etc.) and hybrid heuristics will be explored for solving the problem of reducing memory energy consumption.

ACKNOWLEDGMENT

This work is financed by the French national research agency (ANR) in the Future Architectures program.

REFERENCES