A New Approach In Protein Folding Studies Revealed The Potential Site For Nucleation Center

Nurul Bahiyah Ahmad Khairudin, Habibah A Wahab

Abstract—A new approach to predict the 3D structures of proteins by combining the knowledge-based method and Molecular Dynamics Simulation is presented on the chicken villin headpiece subdomain (HP-36). Comparative modeling is employed as the knowledge-based method to predict the core region (Ala9-Asn28) of the protein while the remaining residues are built as extended regions (Met1-Lys8; Leu29-Ph36) which then further refined using Molecular Dynamics Simulation for 120 ns. Since the core region is built based on a high sequence identity to the template (65%) resulting in RMSD of 1.39 Å from the native, it is believed that this well-developed core region can act as a ‘nucleation center’ for subsequent rapid downhill folding. Results also demonstrate that the formation of the non-native contact which tends to hamper folding rate can be avoided. The best 3D model that exhibits most of the native characteristics is identified using clustering method which then further ranked based on the conformational free energies. It is found that the backbone RMSD of the best model compared to the NMR-MDavg is 1.01 Å and 3.53 Å, for the core region and the complete protein, respectively. In addition to this, the conformational free energy of the best model is lower by 5.85 kcal/mol as compared to the backbone RMSD of the best model compared to the NMR-MDavg. This structure prediction protocol is shown to be effective in predicting the 3D structure of small globular protein with a considerable accuracy in much shorter time compared to the conventional Molecular Dynamics simulation alone.

Keywords—3D model, Chicken villin headpiece subdomain, Molecular dynamic simulation NMR-MDavg, RMSD.

I. INTRODUCTION

The available approaches to predict the protein structure rely on two distinct sets of principles; the laws of physics mainly employing Molecular Dynamics (MD) Simulation and the theory of evolution which gives rise to comparative modeling. To date, comparative modeling remains the only accurate knowledge-based prediction method. However, it is limited to proteins that share a certain degree of sequence similarity with other protein templates [1, 2]. On the other hand, all-atom MD folding simulations do not yet seem to be able to provide high-resolution information for the majority of proteins. Furthermore, it is extremely expensive as it needs to simulate beyond the microsecond time regime, which is the minimum bound for proteins to fold. Thus far, all-atom MD folding simulation is currently limited to small proteins and peptides [3-6]. This study intends to combine the knowledge-based and the physics-based MD folding simulation. The general idea of the present work is to model the core region of the protein using information from the template structure whereas leaving the end-terminal regions to fold via MD simulation which up to the knowledge, has never been reported elsewhere. Therefore, this two-step approach represents an alternative method in the structure prediction of small proteins by presenting a test-case application to the fast folder, villin headpiece subdomain (HP-36; PDB id: 1VII) with estimated folding time of 5 μs [7]. The rationale behind the selection of this protein is due to its small size and its ability to fold in such a short time making it one of the most investigated systems for protein folding and protein structure prediction studies.

II. PROCEDURE

A. MD simulation on native NMR

The protein coordinate of HP-36 was obtained from the PDB [8]. The protein was immersed in a truncated octahedron water box containing 2335 molecules of TIP3P water [9] and two chloride ions to maintain the system neutrality. The system was then mini-mized employing 500 and 1500 cycles of steepest descent and the conjugate gradient methods, respectively. The system was then further subjected to 50 ns of MD simulation. It was initially heated from 0K to 300 K in 40 ps at constant volume and further equilibrated at constant pressure (1 bar) and constant temperature (300 K) using the Berendsen weak-coupling thermostat [10] with coupling constants of 1 ps.

The production phase was started from an equilibration phase of 960 ps at 300K and 1 bar of pressure with the system density comply with the density of liquid water. The nonbonded interactions were treated using 10 Å cuttoff and PME algorithm for Lennard Jones and coulomb interactions respectively. Both of the energy minimization and MD simulation were carried out using AMBER8 [11] suite of programs utilizing the force field amber ff03 [12].

B. Development of the core region

The 36-residues linear amino acid chain of HP-36 was subjected to sequence analysis using the web-interface...
BLAST [13] to locate for the appropriate template. The sequence alignment between the template and the target was performed using CLUSTALW [14] and the 3D model was built using the program Modeller7v7 [15].

C. Development of complete protein

All the remaining residues that were not modeled were added to both end regions of the core structure using the program Modeller7v7. The developed model was then further subjected to 120 ns of MD simulation with the same condition as described for the native NMR. The complete protocol of this combined method is summarized in Figure 1.

D. Data analyses

RMSD and hydrogen bond analysis were each calculated using the ptraj module implemented in Amber8. The software NACCESS [16] was used to calculate the solvent accessible surface area (SASA). Tertiary native contacts, radius of gyration (Rgyr) and the clustering analyses were carried out using the tools from the MMTSB program [17]. The conformational free energies were estimated using the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) protocol [18, 19].

The entropy contribution was not calculated since it was previously proven that this term varied negligibly between the trajectories [20, 21] and furthermore, it was too expensive to calculate.

\[
\Delta G = \Delta EMM + \Delta G_{solv}
\]

III. RESULT & DISCUSSION

A. Development of the core region

From the BLAST result, the NMR structure of the human villin C-terminal headpiece subdomain (PDB id:1UNC) was randomly chosen as the modeling template. The sequence alignment between these two proteins is shown in Figure 3.

The local and global percentages of sequence identity are 65% and 36%, respectively. The developed 3D model (Ala9 to Asn28) is observed to contain two native α helices. Helix 2 consist of Arg15 to Asn20 (NMR-native: Arg15-Phe18) while Helix 3 is made up of Leu23 to Asn28 (NMR-native: Leu23-Lys30). The backbone RMSD (RMSDback) with reference to the NMR-native is 1.39 Å.

![Fig. 1 Flowchart of the combined protocol. This method combines comparative modeling for the development of the core region and MD simulation for the complete 3D model generation and structure refinement.](image)

![Fig. 2 Sequence alignment between the target HP-36 (1VII) and the template 1UNC. The yellow box region corresponds to the core region of the model (Ala9 – Asn28) with 65% of sequence identity. Asterisks represent conserved residues.](image)
The high level of native contacts corresponds to the formation of new tertiary contacts formed by the interactions between the terminal regions and the knowledge-based core region. For instance, Val10 from the core region and Lys33 from the C-terminal region form a contact in the NMR-MDavg with a distance of 3.46 Å and this contact is also observed to form in the model at 28.1 ns with a distance of 3.44 Å. The hydrogen bond that forms between the donor Glu32@OE2 and the acceptor Val10@N mainly contributes in preserving this native tertiary contact. This hydrogen bond is very stable since it shows the highest residence time i.e., 69% among all the other hydrogen bonds observed in the system. It even reaches its highest stability in the last 10 ns with 95% occupancy. However, this bond is not present in the NMR-MDavg simulation.

The total SASA of HP-36 quickly decreases from ~3800 Å2 to ~3200 Å2 in the first 20 ns and remains fluctuated around this value (Figure 3(d)). At the beginning of the simulation, the N-terminal region rapidly moves towards the core region to protect the nonpolar part from being exposed to the solvent and this explains the reduction in SASA. Residues in the hydrophobic core region have lower SASA values compared to those on the exterior part. As compared to the nonpolar part, the polar SASA does not decrease much due to the high affinity of the hydrophilic residues to water molecules.

The three α-helices in the NMR-MDavg are made up of residues Asp4-Phe11, Arg15-Asn20 and Leu23-Lys33, respectively. However, the helices that form in our model are shorter than that of the NMR-MDavg, Helix1 (Leu2-Glu5); Helix2 (Arg15-Phe18); Helix3 (Leu23-Gln26). Another strange finding is the formation of an intermittent β-sheet by two β-strands. Up to our knowledge, this event has never been reported in the previous folding studies of HP-36. Lys8 and Ala9 form the first β-strand while the second strand is formed by residues Met13 and Thr14 connected by a hydrophobic turn comprising Val10, Phe11 and Gly12. These three nonpolar residues are rapidly drawn towards the core region in the beginning of the simulation in order to avoid contacts with water molecules on the protein surface (Figure 4).

Since Phe7 is surrounded by polar residues, it requires a hydrophobic shield from the surrounding water; and this should be provided by Phe11, Ala9 and Val10. Instead, both Val10 and Phe11 collapse to the core region causing Lys8 and Ala9 to adopt φ and ψ angles of that of β-sheet. It is possible that given longer simulation time, we may observe Phe7 to form a hydrophobic interaction with these residues. This perhaps will automatically disrupt the transient β-sheet to form a more stable α-helix. It is a common fact that both lysine and alanine show high propensities towards α-helices compared to β-sheets [23]. Thus, we believe that Phe7 might initiate the stable form of helix 1 as it is claimed that the coil to helix transition is driven primarily by non-polar interactions [24]. In another folding study on the same protein [25], claimed that the formation of the non-native contact between Phe36 with other phenylalanines (Phe7, Phe11 and Phe18) hindered the folding rate and they suggested that this hydrophobic contact needs to be broken in order for the protein to fold [3]. However, this phenomenon does not occur in our result as Phe36 is not making hydrophobic interaction with the core residues of the phenylalanines. If their notion holds, our protocol will have an advantage of escaping the formation of the non-native contact whose presence will delay the folding process.

Fig. 3 Structural analyses after 120 ns of MD simulation. Time evolution of (a) backbone RMSD; Green squares represent the backbone RMSD for all residues while the purple triangles represent the RMSD for the core region (residue Ala9- Asn28). (b) radius of gyration for model (yellow) and the NMR-MDavg (pink). (c) fraction of native contacts for the model (d) total solvent accessible surface area (Å2) (blue) with the contributions from the polar (pink) and the nonpolar (orange) residues. Time in picoseconds (ps).

Fig. 4 Atomic interactions in the developed knowledge-based core region of HP-36. (a) The starting model prior to MD simulation; (b) Model after 100 ps of MD simulation. The collapse of Phe11 and Val10 towards the hydrophobic cluster core region is shown.

Clustering and energetic analysis:

The trajectories are subjected to clustering analysis in order to discriminate the native-like model from the non-natives or to put it differently, to locate for the 3D model that best represents the native structure of HP-36. Six distinctive clusters are obtained and the most populated is Cluster 2 with 513 populations covering 42.7% of the trajectories (Table I). A centroid structure is also generated for each clusters and the corresponding RMSDbck of these six centroids with reference to the NMR-MDavg are described in Table I.

In general, almost all of the six clusters are scattered along the trajectories especially Cluster 2, 3 and 5 as illustrated in...
Figure 5(a). Cluster 1, 4 and 6 however are more localized but less important. Further inspection of Cluster 1 reveals that all the members are extracted from the beginning of the folding coordinates and can be regarded as insignificant. At this stage, all of the models are very much non-native with the centroid having the highest RMSD towards the NMR-MDavg (4.45 Å). Cluster 4 which occurs among trajectories mostly at 49-58 ns can also be regarded as insignificant, as it comprises of very loosely packed structures (Figure 5(b)) with a low native tertiary contacts (Figure 5(c)). Cluster 6 on the other hand represents a collection of trajectories extracted from the beginning of the simulation (10-25 ns), thus are also very much different from the NMR-MDavg.

Table I: Comparison of structural properties between each conformational clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>RMSD (Å)</th>
<th>BS (Å²)</th>
<th>Δe</th>
<th>Δe avg</th>
<th>Core</th>
<th>Δe avg</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>11.21</td>
<td>40.0</td>
<td>1.35</td>
<td>4.45</td>
<td>1.02</td>
<td>4.84</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>359</td>
<td>10.60</td>
<td>100.2</td>
<td>1.72</td>
<td>3.40</td>
<td>0.94</td>
<td>3.33</td>
<td>1.01</td>
</tr>
<tr>
<td>3</td>
<td>359</td>
<td>10.84</td>
<td>84.9</td>
<td>1.40</td>
<td>3.97</td>
<td>1.05</td>
<td>4.91</td>
<td>1.18</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>10.77</td>
<td>50.8</td>
<td>1.37</td>
<td>3.46</td>
<td>0.97</td>
<td>3.53</td>
<td>1.13</td>
</tr>
<tr>
<td>5</td>
<td>359</td>
<td>10.20</td>
<td>72.6</td>
<td>1.15</td>
<td>3.40</td>
<td>0.88</td>
<td>3.61</td>
<td>1.05</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>10.31</td>
<td>144.6</td>
<td>1.47</td>
<td>3.95</td>
<td>0.91</td>
<td>4.35</td>
<td>3.61</td>
</tr>
</tbody>
</table>

N= number of structures in the cluster; Rgyr = average measure of compactness (Å); BS = Native-like conformation extracted at simulation time in nanosecond (ns); Δe-C = RMSDback between the best model and the centroid structure; Δe-C AVG = RMSDback between the centroid structure and the NMR-MDavg; Δe-B AVG = RMSDback between the best structure and the NMR-MDavg; All = All residues from Met1 to Phe3; Core = Residues only in the core region covering Ala9 to Asn28.

Cluster 2 has been identified as the best cluster containing the most near-native like conformations. The definition for the best cluster in this study is the cluster that shows the lowest RMSD between the centroid structure and the NMR-MDavg. However, extra things have been put into considerations such as the number of population within the cluster, the cluster stability as well as the compactness of the conformations within. Although both Cluster 2 and 5 have the same lowest RMSDback-all, Cluster 2 however is found to be more stable with longer residence time and shows higher packing density (10Å).

Furthermore, it is observed that all the states sampled in the last 30 ns of the simulation are grouped in this cluster. A conformation extracted at 10,020 ps (from Cluster 2) has been identified as the 3D model that best represents HP-36 since it gives the lowest RMSDback-all to the centroid. A superimpose of the best model and the NMR-MDavg is shown in Figure 5(b). Figure 5(c) on the other hand, illustrates the deviations between the SASA values of the best model and that of the NMR-MDavg. The SASA are classified into nonpolar and polar contributions. The C-terminal part shows strong deviation from that of the NMR-MDavg thus signifying that all the residues are largely exposed to the solvent (positive values) or largely excluded from the solvent (negative values). Phe36 is found to have 186.46 Å² of its surface exposed to the solvent whereas in the NMR-MDavg it is just 88.35 Å².

The individual terms of the energies are summarized in Table III. The energetic calculation for the NMR-MDavg covers the last 20 ns of the simulation (30-50 ns). Meanwhile, the calculations for the models are not only done on the six clusters, but also on another two trajectory sets with each correspond to two different simulation periods (1-120 ns and 60-120 ns). The reason is to investigate the energy difference between the set containing the initial unstable trajectories (1-120 ns) while the other concerning only the stable part of the conformations (60-120 ns).

As expected, conformations taken from 60 to 120 ns give lower energy compared to the other set (1-120 ns) with a significant energy gap of 4.26 kcal/mol. Thus, we believe that the conformations obtained in the first 60 ns of the simulation are insignificant and can be ignored especially in the process of ranking the native-like models. It is very interesting to observe that the free energy corresponding to Cluster 2 appears to be the lowest of all the six clusters which suggests that this cluster contains most of the lowest energy conformations. This is expected since all the conformations in Cluster 2 appear to have native-like properties as discussed previously and this finding further strengthens our belief that the best model resides in this cluster. Furthermore, it is also shown that the best model exhibits lower conformational free energy compared to that of the NMR-MDavg with energy difference of 5.85 kcal/mol.

The three main terms that differ largely between the
NMR-MDavg and the models are van der Waals, electrostatic and solvation energies. The variations are insignificant for the other energy terms such as bond, angle and dihedral energies. The van der Waals energy reflects the packing of the protein side chains. The higher energy, the less favorable the van der Waals interactions between the atoms. Overall, the model obtained is not able to replicate the van der Waals energy of that of the NMR-MDavg due to the less precise packing of the amino acid side chains in the model. For example, being highly expanded with a large amount of residues exposed to the solvent, it is not surprising that the starting structure (raw model in Table II shows unfavorable van der Waals interactions (1831.36 kcal/mol). However, as the simulation progresses, the magnitude of the van der Waals energy is reduced as the structure becomes more compact. It is expected that Cluster 1 exhibits the highest van der Waals energy follows by Cluster 6. This is expected since almost all of the conformations in these two clusters are loose and less compact.

Table II

SUMMARY OF VARIOUS ENERGY TERMS CALCULATED FOR MD TRAJECTORIES OF H-36

| Native | NMR-MDavg; Model (1-120 ns) | Conformations taken from 1-120 ns of the simulation; Model (60-120 ns) | Conformations taken from 60-120 ns of the simulation; Best model | Native = NMR-MDavg; Model (1-120 ns) = Conformations taken from 1-120 ns of the simulation; Model (60-120 ns) = Conformations taken from 60-120 ns of the simulation; Best model = the best representative of the HP-36 model; Raw model = the starting model with the core region and the extended terminal segments; <G> = <Egas> + <Gpol> + <Gsol> + <Eele>; <Egas> = gas phase energy; <Gpol> = solvation polar energy; <Gsol> = solvation non-polar energy; <Eele> = electrostatic energy; <GMP> = solvation non-polar energy; <GAPol> = solvation polar energy; All energies are in Kcal/mol.

The protein-protein electrostatic energy (Eele) also shows similar trend as the van der Waals term; none of the conformations achieve the NMR-MDavg energy (-650.59 kcal/mol). The Model(1-120 ns) and Model(60-120 ns) have internal electrostatic energy higher by 57.9 kcal/mol and 39.54 kcal/mol than that of the NMR-MDavg, respectively. The solvent polarization energy (ΔGsol) calculated by the PB equation reveals that the energy of the NMR-MDavg is much higher (-683.75 kcal/mol) compared to the energies of the other conformations. The result demonstrates that the Eele term favors the native compact state while the ΔGpol term prefers the expanded non-native form. In return, this also signifies that the solvation energy, ΔGsol disfavors the native state. Apart from this, it is also seen that loose conformations exhibit lower ΔGsol and higher Eele compared to compact conformations. For example, the energy gaps for both the Eele and ΔGsol between the raw model and the best model (287.81 kcal/mol and 171.18 kcal/mol, respectively) are found to be much larger than the energy gaps between the best model and the conformations from Cluster 1 (74.61 kcal/mol and 76.08 kcal/mol, respectively). Most of the charged atoms in the NMR-MDavg are buried and this incurs large penalties on the ΔGsol since a large contribution of the solvation term comes from the electrostatic interaction between protein and water. The protein however cleverly eliminates the penalties for burying the charged atoms by forming a smooth equilibrium between the ΔGsol and the Eele terms. These two terms are found to be inversely correlated with an excellent correlation coefficient of 0.98. The burial of these charged atoms thus result in more favorable energy for Eele due to a better atomic charge distribution. This finding is also in agreement with previous studies [21, 26]. As the ΔGsol decreases (more negative), the Eele will compensate by increasing the magnitude (less negative) and vice versa (Figure 5(d)). This cooperative balance between the Eele and the ΔGsol answers to the question of why the model has lower ΔGsol Compared to the NMR-MDavg.

IV. Conclusion

This study reports on the combined approach of the knowledge-based method and MD simulation as an alternative protocol for predicting the 3D structures of proteins. It is shown that this protocol is effective in predicting the 3D structure of small globular protein, HP-36 with a considerable accuracy in much shorter time compared to the conventional MD simulation alone. From this work, we concluded that the presence of the well-developed knowledge-based core region can serve as a ‘nucleation center’ for subsequent rapid folding. We also propose that our combined method is capable in preventing the formation of non-native contact that will hinder the folding rate. However, further works are critical as to enhance this protocol and perhaps benchmark according to the accuracy of the knowledge-based core region and the size of the proteins.

Acknowledgment

This work is supported by the Top Down Grant No 09-02-04-001 BTK/TD/004 awarded by the National Biotechnology Directorate, Ministry of Science, Technology and Innovation, Malaysia. The authors wish to acknowledge MIMOS (M) Berhad for providing the computing time.

References