Evolutionary Origin of the αC Helix in Integrins

B. Chouhan, A. Denesyuk, J. Heino, M. S. Johnson, K. Denessiouk

Abstract—Integrins are a large family of multidomain αβ cell signaling receptors. Some integrins contain an additional inserted I domain, whose earliest expression appears to be with the chordates, since they are observed in the urochordates Ciona intestinalis (vase tunicate) and Halocynthia roretzi (sea pineapple), but not in integrins of earlier diverging species. The domain’s presence is viewed as a hallmark of integrins of higher metazoans, however in vertebrates, there are clearly three structurally-different classes: integrins without I domains, and two groups of integrins with I domains but separable by the presence or absence of an additional αC helix. For example, the I domains in collagen-binding integrins from Osteichthyes (bony fish) and all higher vertebrates contain the specific αC helix, whereas the I domains in non-collagen binding integrins from vertebrates and the I domains from earlier diverging urochordate integrins, i.e. tunicates, do not. Unfortunately, within the early chordates, there is an evolutionary gap due to extinctions between the tunicates and cartilaginous fish. This, coupled with a knowledge gap due to the lack of complete genomic data from surviving species, means that the origin of the collagen-binding I-containing αI domains remains unknown. Here, we analyzed two available genomes from Cullorhinichus mili (ghost shark/elephant shark; Chondrichthyae – cartilaginous fish) and Petromyzon marinus (sea lamprey; Agnathostomata), and several available Expression Sequence Tags from two Chondrichthyae species: Raja erinacea (little skate) and Squallus acantias (dogfish shark); and Epaetetus burgeri (inshore hagfish; Agnathostomata), which evolutionary reside between the urochordates and osteichthyes. In P. marinus, we observed several fragments coding for the αC-containing I domain, allowing us to shed more light on the evolution of the collagen-binding integrins.

Keywords—Integrin of domain, integrin evolution, collagen binding, structure, αC helix

I. INTRODUCTION

INTEGRINS are a large family of bi-directionally signaling, heterodimeric trans-membrane receptors involved in cell-cell and cell-ExtraCellular Matrix (cell-ECM) interactions [1]. The extracellular domains of integrins interact with their ligands, while the cytoplasmic domains communicate with signaling molecules inside the cell [2]. These interactions are central to the regulation of cell migration, phagocytosis, cell growth, immune system function and development [3]. In addition, integrins are also involved in a number of health issues, including tumor progression [4] and recognition of pathogens [5], especially picornaviruses e.g. echovirus 1 [6,7].

B. Chouhan is with the Structural Bioinformatics Laboratory, Department of Biosciences (Biochemistry), Åbo Akademi University, Turku, Finland, and Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland (e-mail: bchouhan@abo.fi).
A. Denesyuk is with the Structural Bioinformatics Laboratory, Department of Biosciences (Biochemistry), Åbo Akademi University, Turku, Finland (e-mail: adenesyuk@abo.fi).
J. Heino is with the Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland (e-mail: jyriki.heino@utu.fi).
M. S. Johnson is with the Structural Bioinformatics Laboratory, Department of Biosciences (Biochemistry), Åbo Akademi University, Turku, Finland (e-mail: johnsonm@abo.fi).
K. Denessiouk is with the Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland and Structural Bioinformatics Laboratory, Department of Biosciences (Biochemistry), Åbo Akademi University, Turku, Finland (e-mail: kdenessi@abo.fi).

Integrins are composed of two subunits, α and β. Humans express 18 different integrin α subunits and 8 different β subunits, which are known to form 24 αβ heterodimeric combinations [8]. The α subunits can be further subdivided into those that contain an additional inserted domain, the αI domain, and those without the αI domain [9]. The Rossmann fold structure of the αI domain buds out of the β-propeller domain [10] in the “head” region of the αI subunit; ligands are primarily recognized via interactions with the Metal Ion Dependent Adhesion Site (MIDAS) [11]. I domains from different integrins have unique expression patterns and carry out different functions. For example, in humans, I domains of α1β1, α2β1, α10β1 and α11β1 generally function as collagen receptors and grant structural integrity to cells and tissues, whereas the I domains of αXβ2, αDβ2, αMβ2, αLβ2 and αEβ7 have roles in the immune system and are required for interactions of leukocytes with endothelial cells and other cell types and matrix structures [12]. A key structural feature that distinguished I domains of the collagen receptors from those of the immune system receptors is the presence of the αC helix located towards the carboxy-terminus of I domains of the collagen receptors. The αC helix has a critical role in the conformational change between the “closed” and “open” forms of the I domain required for ligand binding. Our earlier studies of integrin evolution showed that I domains are present in the urochordates C. intestinalis and H. roretzi, whereas the αC helix is absent (Fig. 1) [13, 14].

Fig. 1 Evolution of the integrin of domains in the chordates

The absence of the αC helix in integrins of early chordates suggests that the integrins were either incapable of collagen binding or that other mechanisms were employed to bind collagens. Since orthologues of mammalian collagen-binding αC-containing I domains are observed in sequences of bony fish and in all more recently diverging species of vertebrates, we can bracket the likely origin of the αC helix containing integrins to after the appearance of the urochordates and before the appearance of the bony fish (Fig. 1) [13]. Unfortunately, many species diverging after the urochordates that once existed are now extinct [15], and thus, it may be impossible to establish the first appearance of either the human-type integrins present in vertebrates today or the origin
of the αC helix typifying the vertebrate collagen receptor I domains. To make things even more uncertain at this time, there is currently a lack of genomic data from the intermediate chordate species that do exist. In the case of the cartilaginous fish, while there are many extant species of sharks and rays, genomic sequence data is spotty at best. Nonetheless, we are fortunate to have available two representative sequenced genomes from the intermediate chordates: **Petromyzon marinus** (the sea lamprey, 5.9x coverage) and **Callorhinchus milii** (the elephant shark, 1.4x coverage). Moreover, Expression Sequence Tags (ESTs) exist for **Eptatretus burgeri** (inshore hagfish), **Raja erinacea** (little skate), and **Squalus acanthias** (dogfish shark) and analysis of these genomic data can give insight into the evolutionary blueprint of the mammalian type integrin αI domains [16]. In our analysis of these data, we could identify “fragments” coding for the αI domain, including αI domains containing the “key” αC helix found in the vertebrate-type collagen binding integrins. Here, we present our analysis of these genomes and discuss their implications for the evolution of the αI-domain containing integrins.

II. METHODS

The genome assemblies of the **P. marinus** and **C. milii** were obtained from http://genome.wustl.edu/genomes/view/petromyzon_marinus and http://esharkgenome.imcb.a-star.edu.sg/resources.html, respectively. The sequences of I-domains from nine human integrin α subunits (sequence data from NCBI: http://www.ncbi.nlm.nih.gov/) were used to perform full-scale local tBLASTn [17] searches (using the service at NCBI) of the above genomes. In addition to the genome assemblies of **P. marinus** and **C. milii**, we used the tBLASTn service to analyze several other incomplete genomes and Expression Sequence Tags (ESTs) from organisms that arose between the divergence of the urochordates and osteichthyes, such as the **R. erinacea**, **S. acanthias** and **E. burgeri**. Sequences from **S. acanthias** were retrieved from NCBI and those of **C. intestinalis** were taken from the supplementary material of Ewan [18]. The Sea Lamprey sequences have been obtained by making local tBLASTn searches in its genome assembly and tBLASTn searches against Sea Lamprey scaffolds at the ENSEMBL database (http://www.ensembl.org/Petromyzon_marinus/Info/Index).

Sequences were aligned using T-COFFEE (http://www.tcoffee.org/) and adjusted manually. Secondary structure prediction employed Jpred [19], GOR [20], Porter [21], Prof_seq [22] and PSIPRED [23].

III. RESULTS

Using the sequences of I domains from the nine human α subunits that contain I domains, we made a comprehensive analysis of all available genome assemblies and ESTs from species that arose after the divergence of the urochordates and before the appearance of osteichthyes, including the genomes of **P. marinus** (sea lamprey), **C. milii** (elephant shark), **R. erinacea** (little skate), **S. acanthias** (dogfish shark) and **E. burgeri** (inshore hagfish). In the sea lamprey we were able to identify three full-length integrin αI domain sequences and four short fragments; in the hagfish one sequence fragment; the search of the skateshark data did not reveal unambiguously identifiable integrin I domain sequences. The sequences from lamprey and hagfish matched the signature motif of the collagen-receptor αI domain. The three full-length sequences from the sea lamprey, Pma_f1, Pma_f2 and Pma_f3, and the fragment from the inshore hagfish, Ebu_f, are shown in Fig. 2. For comparison, we included two of the four human collagen-binding αI domain sequences containing the αC-helix: α1 and α11; two of the five human leukocyte-specific αI domain sequences lacking the αC helix: αM and αD, and all eight known αI domain sequences from the urochordate sea squirt **C. intestinalis**. The alignment of the 16 sequences (Fig. 2) shows extensive areas of sequence similarity that span the entire length of the αI domain, including secondary structure elements (shown in transparent square boxes in Fig. 2) found in the human αI domain X-ray structure [24, 25]. The areas of high sequence conservation include conserved residues of the MIDAS motif from all 16 sequences (columns highlighted in black in Fig. 2). The I domains of four human collagen-binding α subunits contain the αC helix, represented by α1 and α11 in the alignment, whereas the five I domains of the human leukocyte-specific integrin αI subunits, represented by I domains from αM and αD in the alignment, do not contain the αC helix. The eight sequences from the urochordate **C. intestinalis** also do not contain the αC helix. In contrast, all three of the identified full-length integrin αI domain sequences (Pma_f1, Pma_f2 and Pma_f3 in Fig. 2) from the **P. marinus** contain sequences matching the αC helix present in the human collagen-binding integrins. The secondary structure prediction made for the **P. marinus** sequences, using five different computer-based prediction methods, suggests that the sequences are compatible with formation of an alpha helix in the region where the αC helix would be located in the I domain (Fig. 3). The hagfish is a close relative of the lamprey, both belonging to the super-class Agnathostomata. The alignment in Fig. 2 contains an incomplete sequence fragment from the inshore hagfish (E. burgeri; Ebu_f), which matches the signature motif of the collagen-receptor αI domain, and shares strong sequence similarity with the other αI domain sequences, including residues of the highly conserved MIDAS motif. The available sequence terminates just prior to the αC helix present in the collagen-binding I domains and presumably also present within the sequences of the sea lamprey according to the sequence analysis. Without further sequence data spanning the remainder of the presumptive I-domain region, it is not possible to confirm whether the inshore hagfish contains the signature feature i.e. the αC helix of the collagen-binding I domains found in the vertebrates.
IV. CONCLUSION

Early in evolution, prior to the origin of vertebrates, organisms used other means to bind collagens. By the time bony vertebrates arose on the Earth, they had developed specific mechanisms for collagen binding using a set of collagen receptors. Bony fish, for example, have orthologues, indeed multiple isoforms, of each of the human collagen-binding integrins. A key structural feature of the collagen binding function of the human α1, α2, α10 and α11 integrin subunits is the presence of the inserted I domain and its characteristic αC helix, which is absent in the human leukocyte-binding integrins that also have inserted I domains. The αC helix is defined as a major determinant for collagen binding, where a collagen molecule binds into the groove created by this helix and coordinates the metal ion in the MIDAS site as shown by the human α2 I domain structure in complex with a collagen-like triple-helical peptide [12].

It has been shown, however, on several occasions that for some collagen-binding integrins, modifications or even complete removal of the αC helix in the I domain may not prevent collagen binding. For example, Kamata et al. [26] observed that deletion of the entire αC helix did not significantly affect collagen binding to the α2I domain of integrin α2β1, while the amino acids of the MIDAS motif and the bound metal ion played crucial roles in the recognition of collagen. It was also shown for the αI domains of the tunicate C. intestinalis, which lack the αC helix, that they not only could bind collagen IX, but they could do so in a metal-independent manner [27]. These observations suggest that collagen binding by integrins may have preceded the specialization of integrins into a collagen receptor group as seen throughout the vertebrates, and typified by the presence of the αC helix. It is likely then that the helix serves additional functions in addition to participation in binding collagens. Indeed, the function of integrins is inherently dynamic and in response to ligand binding or a lack thereof integrins change conformation and hence alter their functions in both binding...
molecules via the ectodomain and via their cytoplasmic tails. The structure of the αC helix differs depending on the binding state and it is possible that these changes are communicated through to the conformational and functional state of the αβ integrin as a whole.

Notwithstanding the functional role of the αC helix and whether or not it is absolutely required for collagen binding, it is an observed marker that distinguishes the two functionally-different sets of I domains found throughout the vertebrates. Where present, the integrins function as collagen receptors. Here, we have sought to identify more closely the origin of the αC helix in chordate evolution. The present data, while limited by the available species and genomes that have been sequenced, as well as the quality of the genomic data, do identify the presence of integrin-type I domains in the lamprey P. marinus having all of the hallmarks of a vertebrate collagen receptor, including the MIDAS motif, and most telling, the presence of sequence matching the diagnostic αC helix. Integrin I domains are expected to be present in cartilaginous fish and the absence of identifiable sequences is unexpected but very likely reflects the current state of sequencing for these species.

ACKNOWLEDGMENT

This work was supported in part by grants from Stiftelsens för Åbo Akademi Forskningsinstitut, Åbo Akademi University Center of Excellence Program in Cell Stress and Aging, the Sigrid Jusélius Foundation, the Joe, Pentti and Tor Borg Memorial Fund, and the National Doctoral Program in Computational infrastructure provided by funding from Biocenter Finland in bioinformatics and Åbo Akademi University.

REFERENCES