Recovery of Missing Samples in Multi-channel Oversampling of Multi-banded Signals

J. M. Kim, and K. H. Kwon

Abstract—We show that in a two-channel sampling series expansion of band-pass signals, any finitely many missing samples can always be recovered via oversampling in a larger band-pass region. We also obtain an analogous result for multi-channel oversampling of harmonic signals.

Keywords—oversampling, multi-channel sampling, recovery of missing samples, band-pass signal, harmonic signal

I. INTRODUCTION

For a bounded and closed band-region \(B \), let \(\text{PW}_B \) be the Paley-Wiener space of finite energy (i.e. square integrable) signals of which frequencies are confined in \(B \). That is,
\[
\text{PW}_B := \{ f(t) \in L^2(\mathbb{R}) : \text{supp} \hat{f}(\xi) \subset B \},
\]
where \(\mathcal{F}(f)(\xi) = \hat{f}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{i\xi t}dt \) is the Fourier transform of \(f(t) \) with inverse Fourier transform
\[
f(t) = \mathcal{F}^{-1}(\hat{f})(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi)e^{i\xi t}d\xi.
\]
If a signal \(f(t) \) is single-banded with band-region \(B = [-\pi\omega, \pi\omega] (\omega > 0) \), then \(f(t) \) can be expanded as a Shannon sampling series:
\[
f(t) = \sum_{n=-\infty}^{\infty} f\left(\frac{n}{\omega}\right) \sin \pi(t-n) \frac{\pi}{n},
\]
in which all samples \(\{f\left(\frac{n}{\omega}\right) : n \in \mathbb{Z}\} \) are independent. However, if we oversample \(f(t) \) with higher rate than the optimal Nyquist rate \(\omega \), then we will obtain multi-channeling, and we may or may not to recover finitely missing samples depending on the nature of the band-region \(B \) and pre-filters used in channeling \([6,10] \). In this work, we show that in case of band-pass and harmonic signals, any finitely many missing samples can be always recovered through a multi-channel oversampling in a larger band-region of the same type.

II. OVERSAMPLING OF BAND-PASS SIGNALS

Consider a band-pass region \(B = B_- \cup B_+ \), where \(w_0, w > 0 \) and
\[
B_- = [-\pi(\omega_0 + \omega), -\pi\omega_0] \quad \text{and} \quad B_+ = [\pi\omega_0, \pi(\omega_0 + \omega)].
\]
Then the optimal Nyquist rate for signals in \(\text{PW}_B \) is \(\omega \) samples per second. For \(\tau \) with \(0 < \tau \leq w_0 \), let \(\bar{B} = B_- \cup B_+ \) be another band-pass region, where
\[
\bar{B}_+ = [-\pi(\omega_0 + \omega + \tau), -\pi(\omega_0 + \tau)]
\]
The authors are with the Division of Applied Mathematics KAIST, Daejeon, Korea (e-mail: franz.kim@amath.kaist.ac.kr, khkwon@amath.kaist.ac.kr).

and
\[
\bar{B}_- = [\pi(\omega_0 - \tau), \pi(\omega_0 + \omega + \tau)].
\]
We take \(\tau \) so that \(\tau := \frac{2\omega_0 + \omega}{2\pi + \omega} \) is a positive integer. Then \(\bar{B}_+ = \bar{B}_- + \pi(2\tau + \omega) \) so that \(\bar{B} \) becomes a so-called selectively tiled band-region \([4] \) of length \(2\pi\bar{\omega} \) with \(\bar{\omega} = \omega + 2\tau \). Note that the smallest such \(\tau \) is obtained when we take \(\tau \) to be the integer less than \(1 + \frac{\pi\omega}{2\omega_0} \).

For any band-pass signal \(f(t) \) in \(\text{PW}_B \), let
\[
c_j(f)(t) := \mathcal{F}^{-1}(A_j(\xi)\hat{f}(\xi))(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A_j(\xi)\hat{f}(\xi)e^{i\xi t}d\xi
\]
be the channelled output signals of the input signal \(f(t) \). Then \([4,7,8,9]\)
\[
f(t) = \sum_{j=1}^{2} \sum_{n} c_j(f)\left(\frac{2n}{\omega}\right)S_{j,n}(t),
\]
which converges in \(\text{PW}_{\bar{B}} \) and also converges uniformly on \(\mathbb{R} \). By taking Fourier transform on (2), we obtain
\[
\hat{f}(\xi) = \sum_{j=1}^{2} \sum_{n} c_j(f)\left(\frac{2n}{\omega}\right)\phi_{j,n}(\xi),
\]
which converges in \(L^2(\mathbb{R}) \), where
\[
\phi_{j,n}(\xi) = \frac{1}{\bar{\omega}} \sqrt{2} U_j(\xi)e^{-i\bar{\omega}\xi}
\]
and
\[
A(\xi)^{-1} = \begin{bmatrix} U_1(\xi) & U_2(\xi) \\ U_1(\xi + r\pi\bar{\omega}) & U_2(\xi + r\pi\bar{\omega}) \end{bmatrix} \quad \text{on} \quad \bar{B}_-.
\]
If \(f(t) \) is in \(\text{PW}_{\bar{B}} \), i.e., \(\text{supp} \hat{f} \subset B \), then
\[
\hat{f}(\xi) = \sum_{j=1}^{2} \sum_{n} c_j(f)\left(\frac{2n}{\omega}\right)\phi_{j,n}(\xi)\chi_B(\xi)
\]
in \(L^2(\mathbb{B}) \), where \(\chi_B(\xi) \) is the characteristic function of \(B \). By taking inverse Fourier transform on (4), we have
\[
f(t) = \sum_{j=1}^{2} \sum_{n} c_j(f)\left(\frac{2n}{\omega}\right)T_{j,n}(t)
\]
where \(T_{j,n}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi_{j,n}(\xi)e^{i\xi t}d\xi \). We may call (5) a two-channel oversampling series expansion of \(f(t) \) in \(\text{PW}_{\bar{B}} \).
III. RECOVERING MISSING SAMPLES

For a band-pass signal \(f(t) \) in \(PW_B \), consider its oversampled expansion (5).

Lemma 1. We have for any integer \(m \)

\[
c_k(f)(\frac{2m}{\omega}) = \frac{1}{\pi \omega} \sum_n c_k(f)(\frac{2n}{\omega}) \int_{B^-} e^{i \frac{\pi}{\omega} (m-n)\xi} d\xi
\]

for \(k = 1, 2 \).

Proof: By (1) and (4), we have

\[
c_k(f)(t) = \frac{1}{\sqrt{2\pi}} \int_{B^-} A_k(\xi) \hat{f}(\xi) e^{i\xi t} d\xi
\]

Hence for any integer \(m \) we have

\[
c_k(f)(\frac{2m}{\omega}) = \frac{1}{\pi \omega} \sum_{j,k} c_j(\frac{2n}{\omega}) \int_{B^-} A_k(\xi) U_j(\xi) \chi_B(\xi) e^{i \frac{\pi}{\omega} (m-n)\xi} d\xi
\]

We may write (7-8) in a vector form as :

\[
\begin{aligned}
(I - S_1) c_1 &= g_1 \\
(I - S_2) c_2 &= g_2
\end{aligned}
\]

where

\[
\begin{aligned}
c_1 &= (c_1(f)(\frac{2m_1}{\omega}), \ldots, c_1(f)(\frac{2m_M}{\omega}))^T, \\
c_2 &= (c_2(f)(\frac{2n_1}{\omega}), \ldots, c_2(f)(\frac{2n_N}{\omega}))^T, \\
g_1 &= (g_{11}, \ldots, g_{1M})^T, \\
g_2 &= (g_{21}, \ldots, g_{2N})^T,
\end{aligned}
\]

and

\[
S_1 = \left[\frac{1}{\omega} r(m_j, m_k) \right]_{j,k=1}^M, \quad S_2 = \left[\frac{1}{\omega} r(n_j, n_k) \right]_{j,k=1}^N.
\]

Note that \(S_1 \) and \(S_2 \) are self-adjoint. Now for any \(u = (u_1, \ldots, u_M) \in \mathbb{C}^M \),

\[
\langle S_1 u, u \rangle = \frac{1}{\sigma^2} \sum_{j,k=1}^M r(m_j, m_k) u_j u_k
\]

is a harmonic band-region and

\[
B := \bigcup_{i=1}^N [a_i, b_i]
\]

is a harmonic band-region and

\[
\begin{aligned}
b_i - a_i &= \frac{\pi \omega}{2} (1 \leq i \leq N) \\
a_{i+1} - b_i &= 2\pi \omega (1 \leq i < N) \text{ for } \omega, \omega_0 > 0.
\end{aligned}
\]

For \(0 < \tau \leq \omega_0 \), let \(\tilde{B} := \cup_{i=1}^N \tilde{B}_i \) be another harmonic band-region, where

\[
\tilde{B}_i = [a_i - \pi \tau, b_i + \pi \tau] \text{ for } 1 \leq i \leq N.
\]

We take \(\tau \) so that \(r := \frac{2\pi \omega_0}{\pi \omega} \) is a positive integer. Then \(\tilde{B}_i = \tilde{B}_i + (j - 1)\pi \tau + \omega \) for \(1 \leq i < j \leq N \) so that \(\tilde{B} \) becomes a so-called selectively tiled band-region of total length \(N\pi \omega \), where \(\omega = \omega + 2\tau \). We now take \(N \) pre-filters \(A_j(\xi) (j = 1, 2, \cdots, N) \) of bounded measurable functions on \(\tilde{B} \). We set \(A(\xi) \) be the \(N \times N \) matrix whose \((j, k) \)th component is given by

\[
A_{jk}(\xi) = \langle A_j(\xi) \hat{f}(\xi) \rangle (\xi) = \frac{1}{\sqrt{2\pi}} \int_{\tilde{B}} A_j(\xi) \hat{f}(\xi) e^{i\xi t} d\xi
\]

and assume \(|\det A(\xi)| \geq \alpha > 0 \) a.e. on \(\tilde{B} \).
be the channeled output signals. Proceeding as in Section 2, we can obtain an oversampling formula for any harmonic signal \(f(t) \) in \(PW_B \) (but viewed as a signal in \(PW_B \)) as

\[
f(t) = \sum_{j=1}^{N} \sum_{n} c_j(f) \left(\frac{2n}{\omega} \right) T_{j,n}(t). \tag{10}
\]

Then, we have the following multi-channel analog of Theorem 3.2.

Theorem 2. For any finite index sets of integers \(I_i (i = 1, 2, \ldots, N) \), any finite missing samples \(\cup_{i=1}^{N} \{ c_i(f) \left(\frac{2m}{\omega} \right) : m \in I_i \} \) from the oversampling (10) can be uniquely recovered.

ACKNOWLEDGMENT

This work is partially supported by BK-21 project and KRF(2002-070-C0004).

REFERENCES

