Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method

Reza Cheraghi Kootiani, and Ariffin Bin Samsuri

Abstract—To derive the fractional flow equation oil displacement will be assumed to take place under the so-called diffusive flow condition. The constraints are that fluid saturations at any point in the linear displacement path are uniformly distributed with respect to thickness; this allows the displacement to be described mathematically in one dimension. The simultaneous flow of oil and water can be modeled using thickness averaged relative permeability, along the centerline of the reservoir. The condition for fluid potential equilibrium is simply that of hydrostatic equilibrium for which the saturation distribution can be determined as a function of capillary pressure and therefore, height. That is the fluids are distributed in accordance with capillary-gravity equilibrium.

This paper focused on the fraction flow of water versus cumulative oil recoveries using Buckley Leverett method. Several field cases have been developed to aid in analysis. Producing water-cut (at surface conditions) will be compared with the cumulative oil recovery at breakthrough for the flowing fluid.

Keywords—Fractional Flow, Fluid Saturations, Permeability, Cumulative Oil Recoveries, Buckley Leverett Method.

I. INTRODUCTION

Considering how important it is for reservoir engineers to properly estimate water flooding project parameters such as: the volume of oil displaced at any time, the rate of oil production, and the volume of water that must be handled per volume of oil once water production begins; models and aids predicting displacement performance have been presented in literature [1]-[6]. Some of the prediction tools used by engineers consist of graphical aids.

Graphical methods are still useful to petroleum engineers because in some cases it is possible to obtain comparable accuracies in a shorter time as compared to computer methods. On the other hand, due to the increased knowledge in fluid mechanics through porous media, advent of high-speed computer and better simulation software, it is now possible to use fewer and better assumptions to adjust models to real world scenarios. For many years, consultants, professors, students and engineers have used the intersection of the tangent to the fractional-flow water saturation curve, \(f_W \), vs. \(S_W \), to calculate the average water saturation after breakthrough. In recent years, new technology has been used to expand the scale of this \(f_W \), vs. \(S_W \), plot after breakthrough, for better visualization and achievement of more accurate results. From field technique it is clear that the technique is subject to errors, since it is difficult to determine the exact point at which the tangent to the fractional-flow curve intersects the curve [7]-[9].

II. FRACTIONAL FLOW THEORY

To derive the fractional flow equation oil displacement will be assumed to take place under the so-called diffusive flow condition [1], [4]. The constraints are that fluid saturations at any point in the linear displacement path are uniformly distributed with respect to thickness; this allows the displacement to be described mathematically in one dimension. The simultaneous flow of oil and water can be modeled using thickness averaged relative permeability, along the centerline of the reservoir. The condition for fluid potential equilibrium is simply that of hydrostatic equilibrium for which the saturation distribution can be determined as a function of capillary pressure and therefore, height. That is the fluids are distributed in accordance with capillary-gravity equilibrium [7].

The condition of vertical equilibrium will be favored by:
1. A large vertical permeability \(K_V \)
2. Small reservoir thickness
3. Large density difference between the fluids
4. High capillary forces meaning large capillary transition zone (H)
5. Low fluid viscosities low injection rates
6. Low injection rates

The diffusive flow condition occurs when:
1. The displacement occurs at very high injection rates so that the effects of capillary and gravity forces are negligible. The vertical equilibrium condition is not satisfied.
2. The displacement is at low injection rates in reservoirs for which the measured capillary transition zone greatly exceeds the reservoir thickness and the vertical equilibrium condition applies.

The second condition visualized by observing Fig. 1. Since the transition zone (H) is much larger than the reservoir thickness, the water saturation can be considered uniformly distributed with respect to the reservoir thickness. Fig. 2 represents a small transition curve [8], [10].

R. C. Kootiani is with the Universiti Teknologi Malaysia, 81330 UTM Johor Bahru, Malaysia (corresponding author to provide phone: 0060108946936; e-mail: rchi1986@gmail.com).
Ariffin Bin Samsuri is with Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia (e-mail: ariffin@petroleum.utm.my).
Fig. 1 Approximation to the diffuse flow condition for \(H \gg h \)

Fig. 2 An example of a capillary curve with a small transition zone

Fig. 3 shows schematics of the top view of a linear reservoir which has uniform cross sectional area \(A \). Displacement will be considered in this prototype reservoir model which can be tilted as indicated in Fig. 4. Both injection and production wells are considered to be perforated across the entire, formation thickness, in the dip-normal direction [1].

Fig. 4 Linear prototype reservoir model 1-D displacement. Cross section

The objective in this study is to describe the fluid saturation distributions in the \(y \)-direction as the fluid moves through the \(x \)-direction.

Considering oil displacement in the tilted reservoir of Fig. 4, Darcy’s equation, is applied for linear flow. The 1-D equations for the simultaneous flow of oil and water are:

\[
q_o = \frac{-KK_{ro}A\rho_o}{\mu_o} \left(\frac{\partial \varphi}{\partial x} \right) \\
q_w = \frac{-KK_{rw}A\rho_w}{\mu_w} \left(\frac{\partial \varphi}{\partial x} \right)
\]

(1)
(2)

where \(\varphi \) the potential is defined as

\[
\varphi = \frac{p}{\rho} + gz = \frac{p}{\rho} + g\sin \theta
\]

(3)

Thus, the flow rate for oil is

\[
q_o = \frac{-KK_{ro}A}{\mu_o} \left(\frac{\partial p_o}{\partial x} + \frac{\rho_o g \sin \theta}{1.0133 \times 10^5} \right)
\]

(4)

and the flow rate of water is

\[
q_w = \frac{-KK_{rw}A}{\mu_w} \left(\frac{\partial p_w}{\partial x} + \frac{\rho_w g \sin \theta}{1.0133 \times 10^5} \right)
\]

(5)

Subtract Equation (4) from Equation (5) and recall

\[
P_c = P_o - P_w \rightarrow \text{capillarypressure}
\]

\[
q_t = q_o + q_w \rightarrow \text{totalflowrate}
\]
If in (Equation 6), the oil flow rate was substituted in terms of water and total flow rate, therefore [8],

\[
q_w \times \left\{ \frac{\mu_w}{K_{rw}} + \frac{\mu_o}{kK_{ro}} \right\} = \frac{q_{tw}}{k} + A \left(\frac{\partial P_c}{\partial x} - \frac{g\Delta \rho \sin \theta}{1.0133 \times 10^6} \right)
\]

Define fractional water flow \(f_w \) in the reservoir as

\[
f_w = \frac{q_w}{q_{tw} + q_o} = \frac{q_w}{q_t}
\]

Substitute Equation (8) in Equation (7),

\[
f_w = \frac{1 + \frac{K_{ro} A (\partial P_c}{\mu_o} \Delta g \sin \theta}{0.0133 \times 10^6 A} \frac{\partial P_c}{\partial x}}{1 + \frac{\mu_w k K_{rw}}{\mu_o K_{rw}}}
\]

Or in field units

\[
f_w = 1 + 1.127 \times 10^{-3} \frac{K_{ro} A (\partial P_c}{\mu_o} \Delta g \sin \theta - 0.4335 \Delta \gamma \sin \theta}{1 + \frac{\mu_w k K_{rw}}{\mu_o K_{rw}}}
\]

For horizontal flow and neglecting the capillary pressure gradient we have:

\[
f_w = \frac{1}{1 + \frac{K_{ro} A (\partial P_c}{\mu_o} \Delta g \sin \theta}{0.0133 \times 10^6 A}}
\]

Then expressed Equation (10) as

\[
f_w = \frac{f_{wh}}{1 + N_c + N_g} \left(1 + \frac{K_{ro} A (\partial P_c}{\mu_o} \Delta g \sin \theta}{0.0133 \times 10^6 A} \right)
\]

Dimensionless oil production at breakthrough

\[
N_{pd_{bt}} = W_{id_{bt}} = \frac{q_{id}}{k} \frac{t_{bt}}{S_{wbt} - S_{wc}} = \frac{1}{(\frac{dW}{dS_{w}})} S_{wbt}
\]

After breakthrough, both oil and water will be produced

\[
W_{id} = \frac{1}{(\frac{dW}{dS_{w}})} S_{w}
\]

At this stage to evaluate oil recoveries
\[\bar{S}_w = S_{we} + (1 - f_{we}) \left(\frac{df_{we}}{dS_{we}} \right)_{S_{we}} \]

(17)

Or

\[\bar{S}_w = S_{we} + (1 - f_{we}) W_{id} \]

(18)

Subtract \(S_{wc} \) from both sides of the equation

\[N_{pd} = \bar{S}_w - S_{wc} = S_{we} - S_{wc} + (1 - f_{we}) W_{id} \]

(19)

IV. RESULTS AND DISCUSSIONS

Oil is being displaced by water in a horizontal, direct line drive under the diffuse flow condition. The rock relative permeability functions for water and oil are listed in Table I.

<table>
<thead>
<tr>
<th>(S_w)</th>
<th>(K_{rw})</th>
<th>(K_{ro})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.002</td>
<td>0.800</td>
</tr>
<tr>
<td>0.25</td>
<td>0.009</td>
<td>0.610</td>
</tr>
<tr>
<td>0.30</td>
<td>0.020</td>
<td>0.470</td>
</tr>
<tr>
<td>0.35</td>
<td>0.033</td>
<td>0.285</td>
</tr>
<tr>
<td>0.45</td>
<td>0.051</td>
<td>0.220</td>
</tr>
<tr>
<td>0.50</td>
<td>0.075</td>
<td>0.163</td>
</tr>
<tr>
<td>0.55</td>
<td>0.100</td>
<td>0.120</td>
</tr>
<tr>
<td>0.60</td>
<td>0.132</td>
<td>0.081</td>
</tr>
<tr>
<td>0.65</td>
<td>0.170</td>
<td>0.050</td>
</tr>
<tr>
<td>0.70</td>
<td>0.208</td>
<td>0.027</td>
</tr>
<tr>
<td>0.75</td>
<td>0.251</td>
<td>0.010</td>
</tr>
<tr>
<td>0.80</td>
<td>0.300</td>
<td>0.000</td>
</tr>
</tbody>
</table>

TABLE II

CASES TO ANALYZE THE DIFFERENT FRACTIONAL FLOW RESULTS FOR BUCKLEY-LEVERETT METHOD

<table>
<thead>
<tr>
<th>Case</th>
<th>Oil viscosity</th>
<th>Water viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 cp</td>
<td>0.5 cp</td>
</tr>
<tr>
<td>2</td>
<td>5 cp</td>
<td>0.5 cp</td>
</tr>
<tr>
<td>3</td>
<td>0.4 cp</td>
<td>1.0 cp</td>
</tr>
</tbody>
</table>

Pressure is being maintained at its initial value for which,

\[B_o = 1.3 \frac{r b}{stb} \text{ and } B_w = 1.0 \frac{r b}{stb} \]

The producing water-cut (at surface conditions) was compared with the cumulative oil recovery at breakthrough. Assume that the relative permeability and PVT data are relevant for all three cases.

For horizontal flow the fractional flow in the reservoir is:

\[f_w = \frac{1}{1 + \frac{\mu_w}{\mu_o} \frac{K_{ro}}{K_{rw}}} \]

(20)

while the producing water-cut at the surface, \(f_{ws} \), is:

\[f_{ws} = \frac{q_w / B_w}{q_o / B_o} \]

(21)

Combining the above two Equations leads to an expression for the surface water-cut as:

\[f_{ws} = \frac{1}{1 + \frac{B_w}{B_o} \left(\frac{1}{f_w} - 1 \right)} \]

(22)

The fractional flow in the reservoir for the three cases can be calculated as follows:

Case 1 is \(\frac{\mu_w}{\mu_o} = 0.01 \)

Case 2 is \(\frac{\mu_w}{\mu_o} = 0.1 \)

Case 3 is \(\frac{\mu_w}{\mu_o} = 2.5 \)

TABLE III

EVALUATION OF FRACTIONAL FLOW EQUATION FOR CASES 1 TO 3

<table>
<thead>
<tr>
<th>(S_w)</th>
<th>(K_{rw})</th>
<th>(K_{ro})</th>
<th>(\frac{f_{ws}}{f_w})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0</td>
<td>0.800</td>
<td>0.247</td>
</tr>
<tr>
<td>0.25</td>
<td>0.002</td>
<td>0.610</td>
<td>0.573</td>
</tr>
<tr>
<td>0.30</td>
<td>0.009</td>
<td>0.470</td>
<td>0.800</td>
</tr>
<tr>
<td>0.35</td>
<td>0.020</td>
<td>0.370</td>
<td>0.908</td>
</tr>
<tr>
<td>0.40</td>
<td>0.033</td>
<td>0.285</td>
<td>0.944</td>
</tr>
<tr>
<td>0.45</td>
<td>0.051</td>
<td>0.220</td>
<td>0.959</td>
</tr>
<tr>
<td>0.50</td>
<td>0.075</td>
<td>0.163</td>
<td>0.979</td>
</tr>
<tr>
<td>0.55</td>
<td>0.100</td>
<td>0.120</td>
<td>0.988</td>
</tr>
<tr>
<td>0.60</td>
<td>0.132</td>
<td>0.081</td>
<td>0.994</td>
</tr>
<tr>
<td>0.65</td>
<td>0.170</td>
<td>0.050</td>
<td>0.997</td>
</tr>
<tr>
<td>0.70</td>
<td>0.208</td>
<td>0.027</td>
<td>0.999</td>
</tr>
<tr>
<td>0.75</td>
<td>0.251</td>
<td>0.010</td>
<td>0.996</td>
</tr>
<tr>
<td>0.80</td>
<td>0.300</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Fractional flow plots for the three cases are shown in Fig. 6 and the results obtained by applying Welge's graphical technique, at breakthrough, are listed below:

TABLE IV

OIL RECOVERIES AND SATURATION AT BREAKTHROUGH FOR BUCKLEY-LEVERETT METHOD

<table>
<thead>
<tr>
<th>(S_{wb})</th>
<th>(f_{wb}) (RESERVOIR)</th>
<th>(f_{wsb}) (SURFACE)</th>
<th>(S_{wb}) (PV)</th>
<th>(N_{pd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28</td>
<td>0.55</td>
<td>0.61</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>0.45</td>
<td>0.70</td>
<td>0.75</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td>0.80</td>
<td>1.00</td>
<td>1.00</td>
<td>0.80</td>
</tr>
</tbody>
</table>

1784
An important parameter in determining the effectiveness of a waterflood is the end point mobility ratio defined as:

\[
M = \frac{K_{rw}/\mu_w}{K_{ro}/\mu_o}
\]

And, for horizontal flow, stable, piston-like displacement will occur for \(M \geq 1\). An even more significant parameter for characterizing the stability of Buckley-Leverett displacement is the shock front mobility ratio, \(M_s\), defined as:

\[
M_s = \frac{K_{ro}(S_{wf})/\mu_o + K_{rw}(S_{wf})/\mu_w}{K_{ro}/\mu_o}
\]

In which the relative permeabilities in the numerator are evaluated for the shock front water saturation, \(S_{wf}\). Hagoort has shown, using a theoretical argument backed by experiment, that Buckley-Leverett displacement could be regarded as stable for the less restrictive condition that \(M_s < 1\). If this condition is not satisfied, there will be severe viscous channeling of water through the oil and breakthrough will occur even earlier than predicted using the Welge technique. Values of \(M\) and \(M_s\) for the three cases defined in Table V.

<table>
<thead>
<tr>
<th>CASE NO.</th>
<th>(\frac{\mu_o}{\mu_w})</th>
<th>(S_{wf})</th>
<th>(K_{rw}(S_{wf}))</th>
<th>(K_{ro}(S_{wf}))</th>
<th>(M_s)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0.28</td>
<td>0.006</td>
<td>0.520</td>
<td>1.40</td>
<td>37.40</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.45</td>
<td>0.051</td>
<td>0.220</td>
<td>0.91</td>
<td>3.75</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0.80</td>
<td>0.300</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Using these data the results of the study can be analyzed as follows:

Case 1 - this displacement is unstable due to the very high value of the oil/water viscosity ratio. This results in the bypassing of oil and consequently the premature breakthrough of water. The oil recovery at breakthrough is very small and many pore volumes of water will have to be injected to recover all the movable oil. Under these circumstances oil recovery by water injection is hardly feasible and consideration should be given to the application of thermal recovery methods with the aim of reducing the viscosity ratio.

Case 2 - the oil/water viscosity ratio is an order of magnitude lower than in Case 1, which leads to a stable and much more favorable type of displacement \((M_s < 1)\)

Case 3 - for the displacement of this very low viscosity oil \((\mu_o = 0.4 cp)\) both the end point and shock front mobility ratios are less than unity and piston like displacement occurs.

The tangent to the fractional flow curve, \(f_w = 0\) meets the curve at the point \(S_{wbh} = 1 - S_{or}\), \(f_{wbh} = 1\) and therefore \(S_{wbh} = S_{wbh} = S_{or}\). The total oil recovery at breakthrough is \(S_{wbh} = 1 - S_{or} - S_{wc}\), which the total movable oil volume is.

V. CONCLUSION

Following conclusions can be drawn from this work: The values of the producing water cut at surface conditions and the cumulative oil recovery at breakthrough using Buckley-Leverett method are compared. Buckley-Leverett method shows that Buckley-Leverett displacement could be regarded as stable for the less restrictive condition that \(M_s < 1\). If this condition is not satisfied, there will be severe viscous channeling of water through the oil and breakthrough. When the mobility ratio is unfavorable, the Buckley-Leverett method is no longer applied. The relative permeability and fractional flow profiles are controlled by rock type, and it’s appropriate description helps engineers to make confident predictions from waterflooding project calculation. The new technique, based on this general function, allows the determination of average water saturation after breakthrough and provides more accurate estimation of waterflood performance parameters.

NOMENCLATURE

- \(A\) : Cross- sectional area available for flow, sq ft
- \(\phi\) : Porosity, fraction
- \(d\phi dx\) : Pore volume
- \(df_w/ds_w\) : Slope of the curve of fractional flow
- \(f_w\) : Fractional flow
- \(f_{wbh}\) : Producing water cut at producing well breakthrough, fraction
- \(K_{ro}\) : Relative Permeability to oil phase
- \(K_{rw}\) : Relative Permeability to water phase
- \(\mu_o\) : Water Viscosity, cp

Fig. 6 Fractional flow plots for different oil-water viscosity ratios
\(\mu_o \): Oil Viscosity, cp

\(Q_i \): Pore volume of cumulative injected fluid

\(S_{wi} \): Initial water saturation, fraction

\(S_w \): Water saturation, fraction

\(S_{wbt} \): Water saturation at breakthrough, fraction

\(W_i \): Cumulative injected water volume, bbl [m³]

\(B_o \): Oil formation volume factor

\(B_w \): Water formation volume factor

\(M \): Mobility ratio

\(N_p \): Cumulative barrels of oil produced

\(PV \): Pore volume

\(rb/STB \): Reservoir barrels per stock tank barrel

\(STB \): Stock tank barrels of oil

\(S_o \): Oil saturation

\(S_w \): Average water saturation

\(S_{wbt} \): Average water saturation behind the waterflood front

\(S_{wc} \): Connate water saturation

\(S_{wi} \): Initial water saturation

ACKNOWLEDGMENT

Universiti Teknologi Malaysia is highly appreciated for their continual support during the course of this paper. Special thanks go to the author’s supervisor Prof. Dr. Ariffin Bin Samsuri for his support in the publication of this paper.

REFERENCES

