Coloured Reconfigurable Nets for Code Mobility Modeling

Kahloul Laid, and Chaoui Allaloua

Abstract—Code mobility technologies attract more and more developers and consumers. Numerous domains are concerned, many platforms are developed and interest applications are realized. However, developing good software products requires modeling, analyzing and proving steps. The choice of models and modeling languages is so critical on these steps. Formal tools are powerful in analyzing and proving steps. However, poorness of classical modeling language to model mobility requires proposition of new models. The objective of this paper is to provide a specific formalism “Coloured Reconfigurable Nets” and to show how this one seems to be adequate to model different kinds of code mobility.

Keywords—Code mobility, modeling mobility, labeled reconfigurable nets, Coloured reconfigurable nets, mobile code design paradigms.

I. INTRODUCTION

NOWADAYS, code mobility is one of the attracting fields for computer science researchers. Code mobility technology seems an interest solution for distributed applications facing bandwidth problems, users' mobility, and fault tolerance requirement. Numerous platforms have been developed [18]. Such platforms allow the broadcasting of this technology in many domains (information retrieving [10], e-commerce [12], network management [23], …). Software engineering researches have provided some interest design paradigms influencing the development of the field. The most recognized paradigms [7] are: code on demand, remote evaluation, and mobile agent. To avoid ad-hoc development for code mobility software, many works attempt to propose methodologies and approaches ([17], [22], [15], …). Indeed, these approaches are mostly informal. They lack in analyzing and proving system properties. Enhancing development process with formal tools was an attractive field in code mobility researches.

Traditional formal tools witch were massively used to model and analyze classical systems seem to be poor to deal with inherent proprieties in code mobility systems. Works on formal tools attempt to extended classical tools to deal with code mobility proprieties. The most important proposition can be found in process algebra based model and state transition model. For the first one, \(\pi\)-calculus [14] is the famous one, and for the second, high-level Petri net (with many kinds) can be considered the good representative. \(\pi\)-calculus is an extension for CCS (communicating concurrent systems) [13]. CCS allows modeling a system composed of a set of communicating process. This communication uses names (gates) to insure synchronization between processes. In \(\pi\)-calculus information can been exchanged through gates. The key idea is that this information can be also a gate. With this idea, process can exchange gates. Once these gates received, they can be used by the receiver to communicate. In an extension of \(\pi\)-calculus, \(HO\pi\)-calculus [16], processes can exchange other processes through gates (the exchanged processes called agents).

To model mobility with Petri nets, high level PNs were proposed. The most famous are Mobile Nets (variant of coloured Petri nets) [1] and Dynamic Petri nets. In mobile Petri nets, names of places can appear as tokens inside other places. Dynamic Petri nets extend mobile Petri nets. In this last one, firing a transition can cause the creation of a new subnet. With high-level Petri nets, mobility in a system is modeled through the dynamic structure of the net. A process appearing in a new environment is modeled through a new subnet created in the former net by firing a transition. Many extensions have been proposed to adapt mobile Petri nets to specific mobile systems: Elementary Object Nets [19], reconfigurable nets [3], Nested Petri Nets [11], HyperPetriNets [2], … With respect to [21], all these formalisms lack in security aspect specification. To handle this aspect in code mobility, recently Mobile Synchronous Petri Net (based on labeled coloured Petri net) are proposed [20].

The objective of this work is to present a new formalism based on Petri nets. Our formalism “Coloured reconfigurable nets” as an extension for our work “Labeled Reconfigurable Nets” [8]. We attempt to propose to model mobility in an intuitive and an explicit way. Mobility of code (a process or an agent) will be directly modeled through reconfiguration of the net. We allow adding and deleting of places, arcs, and transitions at run time. In this formalism, we introduce two kinds of specific transitions: calculi transitions and reconfigure transitions. A calculi transition takes as input a set of tokens (of type nets), it computes a set of places and arcs, and it outputs a set of tokens (of types: nets, places and arcs). The objective of this kind of transition is to prepare the reconfiguration of the net (migration of a net). A reconfigure

Manuscript received September 14, 2007.
Kahloul Laid is with Computer Science Department, Biskra University, Algeria (phone: 213 75 17 90 20; fax: +213 33 74 31 61; e-mail: kahloul2006@yahoo.fr).
Chaoui Allaloua is with LIRE laboratory, Constantine University, Algeria (phone: +213 5 82 87 64; e-mail: a_chaoui2001@yahoo.com).
transition takes as input tokens (of types: nets, places and arcs), it reconfigure the net by moving some subnets, places and arcs from one net towards another net. We propose that these two kinds of transition allow modeling mobility in an explicit and more sophisticated manner. In this model we consider that nets, places or arcs can play as tokens. These tokens move from one place to another when some transitions are fired.

II. DEFINITION OF COLOURED RECONFIGURABLE NETS (CRN)

Coloured reconfigurable nets are an extension of labeled reconfigurable nets. Informally, a coloured reconfigurable net is a set of environments (blocks of units). Connections between these environments and their contents can be modified during runtime. A unit is a specific Petri net. A unit can contain three kinds of transitions (a unique start transition: \(\bullet \), a set of ordinary transitions: \(\circ \), a set of calculi transition: \(\diamond \) and a set of reconfigure transitions: \(\triangle \)).

Preconditions and post-conditions to fire a start or an ordinary transition are the same that in Petri nets. When a reconfigure transition is fired, a net \(N \) will be (re)moved from an environment \(E \) towards another environment \(E' \). The net \(N \), the environment \(E \) and \(E' \) are defined by a calculi transition which must always precedes this one. After firing a reconfigure transition, the structure of the coloured reconfigurable net will be updated (i.e some places, arcs, and transitions will be deleted or added). Here after we give our formal definitions of the concepts: unit, environment and coloured reconfigurable net. After the definition, we present the dynamic aspect of this model.

To define coloured reconfigurable nets, we introduce firstly the definition of units and environment.

Definition 1 (Unit):
A unit is a net \(U=(\Sigma, P, T, A, C, E) \).
\(\Sigma \): a finite set of types (colors); we denote by \(expr \) the set of expression that can be written using variables in sets of \(\Sigma \).
\(P \): a finite set of places;
\(T \): a finite set of transitions. We have \(T=T_{U}\cup C\cup R.\) Where \(T_{U} \) is a set of ordinary transitions, \(T=t_{1}, \ldots, t_{n}. \) This set must contain a unique transition that we call a start transition. We denote this transition as \(strT \).
\(C \): a set of calculi transitions, \(C=\{c_{1}, \ldots, c_{m}\} \).
\(R \): a set of reconfigure transitions, \(R=r_{1}, \ldots, r_{p}. \)
\(A \): a set of arcs
\(C \): a color mapping from \(P \) to \(\Sigma. \) \(C \) joins to each place \(p \) a color \(c \) that we note \(C(p) \).
\(E \): an expression mapping from \(A \) to \(expr \).

Definition 2 (Environment):
An environment \(E \) is a quadruplet \(E=(GP, RP, U, A) \).
\(GP = \{gp_{1}, gp_{2}, \ldots, gp_{s}\} \) a finite set of specific places : “guest places ”;
\(RP = \{rp_{1}, rp_{2}, \ldots, rp_{p}\} \) a finite set of specific places : “resource places”;
\(U = \{N_{1}, N_{2}, \ldots, N_{k}\} \) a set of nets. where \(T_{1}, T_{2}, \ldots, T_{k} \) are the sets of their transitions and \(StrT_{1} \cup StrT_{2} \cup \cdots \cup StrT_{k} \) is the set of their start transitions.
\(A \): a set of arcs, \(A\subseteq GP \times StrT_{U}\cup RP\times T. \) Such that:
\(T=T_{1}\cup T_{2}\cup \cdots \cup T_{k} \)

Remark: we say that a unit \(U \) is in an environment \(E \) iff the net \(U \) is a subnet of the net \(E \).

Definition 3 (Coloured reconfigurable nets):
A coloured reconfigurable nets (CRN) is couple \(N=(E, A) \), such that:
\(E \): a finite set of environments;
\(A \): a finite set of arcs; these arcs connect places (resp. transitions) from one environment to other transitions (resp. places) in another environment.

Dynamic of coloured reconfigurable nets:
To introduce the dynamic of CRN we consider three types (colors): \(P \) (set of places), \(N \) (set of nets), and \(B \) (set of arcs). We denote respectively by \(P^{n}, N^{n}, B^{n} \) the three multisets of types \(P \), \(N \), \(B \). We focus on the semantic of calculi and reconfigure transition.

Semantic of calculi transition:
A calculus transition must take as input three types of token \(N \) (two environments and one unit, the unit must be in one and only one of the two environments). Firing the calculi transition provides a token in the multi-sets \(<P^{n}, N^{n}, B^{n}>. \)
We can say that a calculus transition uses a set of nets to computes some arcs and places. At the output, it provides a composite token of the input nets and the computed arcs and places. In general, this token is used by a reconfigure transition.

If \(t \) is a calculi transition, and \(E_{1}, E_{2}, U \) are the input nets \((U \) is in \(E_{1} \)), once \(t \) is fired it produce a token \(<U+E_{1}+E_{2}, P^{n}, A^{n}> \) such that \(P \) and \(A \) are two multisets that can be defined like this:
\(P=\{p\in P_{E_{1}}/ p\notin P_{U} \) and \(\exists t\in T_{U} \) such that \((p,t)\in A_{E_{1}} \) or \((t,p)\in A_{E_{1}} \} \), and
\(A=\{a\in A_{E_{1}}/ a\notin A_{E_{1}} \) and \(\exists (t,p)T_{E_{1}}\times T_{U}\cup T_{E_{1}} \} \). Where \(P_{n}, A_{n} \) and \(T_{n} \) denote respectively places, arcs and transitions of a net \(N \)

Semantic of reconfigure transition:
The objective of a reconfigure transition is to reconfigure the structure of the net. To be fired, a reconfigure transition takes as input a token in the multi-sets : \(<N^{n}, P^{n}, B^{n}>. \) Firing a reconfigure transition will update the structure of the coloured reconfigurable nets that contains this transition in the following semantic:
If \(rt \) is a reconfigure transition and \(<U+E_{1}, E_{2}, P, A^{n}> \) is an input token, to fire \(rt \) we impose that there exists a free place \(p_{e} \) in \(GP_{E_{2}} \); witch means: for each \(t\in StrT_{E_{2}}, (p_{e},t)\notin A_{E_{2}} \).
Once this condition is satisfied, firing rt changes N structurally such that:

If E_1 and E_2 denote the same environment then N will be not changed;
Else:

1) The net U is removed from the net E_1: $U_{E_2} \leftarrow U_{E_2} \cup \{U\}$;
2) The net U is added to the environment E_2: $U_{E_1} \leftarrow U_{E_1} \setminus \{U\}$;
3) $A_{E_2} \leftarrow A_{E_2} \cup \{p _str\}$; such that $strt$ is the start transition for U.
4) Some elements of P are transformed from E_1 towards E_2 some other are cloned and some other will not be changed (resp for elements in A). These elements depend on the modeling case. In section 3, we show how these elements can be defined depending on the mobile code design paradigm to model.

III. MODELING CODE MOBILITY WITH CRN

A mobile code system is composed of execution units (EUs), resources, and computational environments (CEs). EUs will be modeled as units and computational environments as environments. Modeling resources requires using a set of places.

Reconfigure transitions model mobility actions. The key in modeling mobility is to identify the unit to be moved, the target computational environment and the types of binding to resources and their locations. This information is supposed to be known before mobility. We use calculi transition as computing actions that compute this information. After computing these elements, the reconfigure transition updates the net by moving a unit from one environment to another. This moving must respect requirement for bindings to resources to insure the reliability of components on their new locations. Information concerning units, environments and bindings will be defined according to the resources types and to the three design paradigms: remote (REV) evaluation, code on demand (COD), and mobile agent (MA).

A. Remote Evaluation

In remote evaluation paradigm, an execution unit EU_1 sends another execution unit EU_2 from a computational environment CE_1 to another one CE_2.

Example 4.1: Let us consider two computational environments E_1 and E_2. Firstly, E_1 contains two execution units EU_1 and EU_2; E_2 contains an execution unit EU_3. The three execution units execute infinite loops. EU_1 executes actions $\{a_{11}, a_{12}\}$, EU_2 executes actions $\{a_{21}, a_{22}, a_{23}\}$, and EU_3 executes actions $\{a_{31}, a_{32}\}$. a_{23} requires a transferable resource TR_1 and a non-transferable resource bound by type PNR_2 to execute a_{31}. PNR_2 has the same type of PNR_1.

The system will be modeled as a coloured reconfigurable net N. N contains two environments E_1, E_2 that model the two computational environments (CE_1 and CE_2). Units EU_1 and EU_2 will model execution units EU_1 and EU_2, respectively. In this case, the unit EU_1 will contain a reconfigure transition rt and a calculi transition ct.

1. $E_1 = (RP_1, GP_1, U_1, A_1)$; $RP_1 = \{TR_1, PNR_1, VTR_1, NR_1\}$. $U_1 = \{EU_1, EU_2\}$;
2. $E_2 = (RP_2, GP_2, U_2, A_2)$; $RP_2 = \{PNR_2\}$. $GP_2 = \{PEU_1\}$.
3. ct will take as input tokens : E_1, EU_2 and E_2. ct will provide the token : $<EU_1+E_1, EU_2, P, A>$. such that $P = TR_1 + VTR_1$
 $A = (NR_1, a_{23}) + (PNR_2, a_{21})$
4. rt takes as input $<EU_2+E_1+E_2, P, A>$. and will remove EU_1 and places in P from E_1 towards E_2. Arcs in A will be added to the N.

In the Fig.1, the types of places P^1, P^2, P^3 is $N(set of nets)$. P^1 contains EU_1, P^2 contains E_2 and P^3 contains E_2. The type of place P_{str} is $<str^*, P^*, B^*>$.

![Fig. 1 REV-model before firing rt](image-url)
In code-on-demand paradigm, an execution unit EU_1 fetches another execution unit EU_2. The reconfigure transition rt is contained in the unit modeling EU_1. If we reconsider the above example, the unit EU_1 will contain a reconfigure transition rt. Fig. 3 shows the model proposed to model this system. In the Fig. 1, the types of places P_1, P_2, P_3 is N (set of nets). P_1 contains EU_1, P_2 contains E_2 and P_3 contains EU_2. The type of place P_{11} is $<N,*,P,*>$. The transition cu will provide $<EU_2+E_2, E_1, P, A>$. Where P and A are the same as in the above example.

C. Mobile Agent

In mobile agent paradigm, execution units are autonomous agents. The agent itself triggers mobility. In this case, rt – the reconfigure transition – is contained in the unit modeling the agent.

Example 4.2: let E_1 and E_2 two computational environments. E_1 contains two agents, a mobile agent MA and a static agent SA_1; E_2 contains a unique static agent SA_2. The three agents execute infinite loops. MA executes actions $\{a_{11}, a_{12}, a_{13}\}$, SA_1 executes actions $\{a_{21}, a_{22}, a_{23}\}$, and SA_2 executes actions $\{a_{31}, a_{32}\}$. To be executed, a_{11} require a transferable resource TR_1 and a non-transferable resource bound by type PNR_1 witch is shared with a_{21}. a_{12} and a_{22} share a transferable resource bound by value, and a_{13} and a_{23} share a non-transferable resource NR_1. In E_1, SA_2 requires a non-transferable resource bound by type PNR_2 to execute a_{32}. PNR_2 has the same type of PNR_1.

The system will be modeled as a coloured reconfigurable net N. N contains two environments E_1, E_2 that model the two computational environments (CE_1 and CE_2). Units A_1, A_2 and A_3 will model MA, SA_1 and SA_2, respectively. In this case, the unit A_1 will contain a reconfigure transition rt and a calculi transition cu.

1. $E_1=(RP_1, GP_1, U_1, A_1)$; $RP_1=\{TR_1, PNR_1, VTR_1, NR_1\}$, $U_1=\{EU_1, EU_2\}$;
2. $E_2=(RP_2, GP_2, U_2, A_2)$; $RP_2=\{PNR_2\}$, $GP_2=\{PEU_1\}$.
3. ct will take as input tokens : E_1, A_1 and E_2, ct will provide the token : $<A_1+E_1, E_2, P, A>$, such that $P=TR_1+VTR_1$ $A=(NR_1,a_{31})+(PNR_2,a_{32})$
4. rt takes as input $<A_1+E_1, E_2, P, A>$ and will remove A_1 and places in P from E_1 towards E_2. Arcs in A will be added to the N.
In the Fig. 1, the types of places \(P_1, P_2, P_3 \) is \(N \) (set of nets). \(P_1 \) contains \(A_1 \), \(P_2 \) contains \(E_2 \) and \(P_3 \) contains \(E_2 \). The type of place \(P_{11} \) is \(\langle N^*, N, P^*, B^* \rangle \). Fig. 5 shows the model of this system.

In [4], the authors proposed PrN (Predicate/Transition nets) to model mobility. They use concepts: agent space which is composed of a mobility environment and a set of connector nets that bind mobile agents to mobility environment. Agents are modeled through transitions. So these agents are transferred by transition firing from a mobility environment to another. The structure of the net is not changed and mobility is modeled implicitly through the dynamic of the net. In [20], authors proposed MSPN (Mobile synchronous Petri net) as formalism to model mobile systems and security aspects. They introduced notions of nets (an entity) and disjoint locations to explicit mobility. A system is composed of set of localities that can contain nets. To explicit mobility, specific transitions (called autonomous) are introduced. Two kinds of autonomous transition were proposed: new and go. Firing a go transition move the net from its locality towards another locality. The destination locality is given through a token in an input place of the go transition. Mobile Petri nets (MPN) [1] extended colored Petri nets to model mobility. MPN is based on \(\pi \)-calculus and join calculus. Mobility is modeled implicitly, by considering names of places as tokens. A transition can consumes some names (places) and produce other names. The idea is inherited from \(\pi \)-calculus where names (gates) are exchanged between communicating process. MPN are extended to Dynamic Petri Net (DPN) [1]. In DPN, mobility is modeled explicitly, by adding subnets when transitions are fired. In their presentation [1], no explicit graphic representation has been exposed.

In nest nets [9], tokens can be Petri nets themselves. This model allows some transition when they are fired to create new nets in the output places. Nest nets can be viewed as hierarchic nets where we have different levels of details. Places can contain nets that their places can also contain other nets et cetera. So all nets created when a transition is fired are contained in a place. So the created nets are not in the same level with the first net. This formalism is proposed to adaptive workflow systems.

In this work, we attempt to provide a formal and graphical model for code mobility. We have extended Petri net with reconfigure transitions that when they are fired reconfigure the net. Mobility is modeled explicitly by the possibility of adding or deleting at runtime arcs, transitions and places. Modification in reconfigure transition’s label allows modeling...
different kinds of code mobility. Bindings to resources can be modeled by adding arcs between environments. It is clear that in this model created nets are in the same level of nets that create them. Creator and created nets can communicate. This model is more adequate for modeling mobile code systems. Instead of using label associated to reconfigure transition in “Labeled Reconfigurable Nets”[8], witch gives information about mobility, we have introduce colors (types) and a calculi transition that must compute this information. Rigidity due to labels is now avoided in this formalism. This last advantage will make modeling easier.

V. CONCLUSION

Proposed initially to model concurrency and distributed systems, Petri nets attract researchers in mobility modeling domain. The ordinary formalism is so simple with a smart formal background, but it fails in modeling mobility aspects. Many extensions were been proposed to treat mobility aspects. The key idea was to introduce mechanisms that allow reconfiguration of the model during runtime. The most works extends coloured Petri nets and borrow reconfiguration of the model during runtime. The most works we plan to focus on modeling and analyzing aspects. In our future work we plan to focus on modeling and analyzing aspects. In modeling aspects, we are interested to handle problems such that modeling multi-hops mobility, process’s states during travel, birth places and locations. On the analysis aspect, we are thinking about an encoding of our model in maude or mobile maude [5] in order an analysis automation of our model.

REFERENCES

[22] Sutandiyo, W., Chhetri, M.B., Loke, S.W., and Krishnaswamy, S. “mGaia: Extending the Gaia Methodology to Model Mobile Agent Systems”, Accepted for publication as a poster in the Sixth International Conference on Enterprise Information Systems (ICEIS 2004), Porto, Portugal, April 14-17.