Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis

Shaila Ahmed¹, Raghu Prasad Rao Metpally¹, Sreedhara Sangadala² and Boojala Vijay B Reddy¹,*

Abstract—Bone growth factors, such as Bone Morphogenetic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.

Keywords—Transforming growth factor-beta, Bone morphogenetic proteins, Noggin, LUDI de novo design method, CAP small molecules.

I. INTRODUCTION

THE members of the TGF-β (Transforming Growth Factor β) superfamily are structurally related secreted signaling proteins that such as cell-cycle progression, cell differentiation, development, motility, neuronal growth, bone morphogenesis, wound healing, and immune surveillance [1]. Bone morphogenetic proteins (BMPs) are signaling molecules that belong to the TGF-β superfamily. More than twenty different BMPs have currently been identified [2, 3]. BMPs have roles in the regulation of bone induction, maintenance and repair and induce osteoblast differentiation of various types of cells including undifferentiated mesenchymal cells, bone marrow stromal cells, and preosteoblasts [4]. BMP-2 and BMP-4 have been established to be the key factors in embryonic skeletal development [5, 6]. BMP receptors are the transmembrane receptors classified as type I or type II based on sequence homology and contain a Ser/Thr protein kinase domain [7]. BMP ligand binding to type I receptor (BMPRI) induces the association of BMPRII and BMPRII receptors, allowing the constitutively phosphorylated BMPRII to phosphorylate and activate the latent BMPRI [8]. After activation of BMPRI, the receptor regulated (R)-Smad1/5/8 is phosphorylated. The phosphorylation of R-Smad is then released from the receptor complex and associates with common Smad proteins (Co-Smad, Smad4). Subsequently, R-Smad/Co-Smad complex translocates into the nucleus and regulates the transcription of target genes by functioning in concert with other transcription factors (Figure 1) [8, 9].

Fig. 1 BMP signaling pathway: BMP binds to BMP receptor type II that in turn activates BMPR-I. Activated BMPR-I phosphorylates receptor regulated Smads (Smad1/5/8) which form complexes with Smad4. The activated Smad complexes regulate gene expression of BMP-responsive genes. Noggin antagonizes signaling by binding to BMP.

BMP activity is tightly regulated prior to receptor binding by the presence of several structurally distinct extracellular BMP antagonists such as noggin, follistatin, sclerostatin, chordin, DCR, BMPMER, cerserbus, gremlin, DAN, and many others [8, 10]. These are secreted proteins that bind to BMPs and reduce their bioavailability for interactions with the BMP receptors, effectively blocking BMP action. The effects of BMP-2 and BMP-4 are inhibited by a 60-kDa homodimeric protein called noggin [11]. Noggin binds with equal avidity to BMP-2 and BMP-4 and competitively inhibits their interaction with the BMP receptor type IA (BMPRIA) [12, 13]. The application of BMP-2 or an anti-noggin antibody reversed the effect of exogenous or endogenous noggin, respectively [10].

¹Authors are with the Laboratory of Bioinformatics and In Silico Drug Design, Department of Computer Science, Queens College of City University of New York, 65-35 Kissena Blvd, Flushing, NY 11375, USA.

²Author is with Atlanta VA Medical Center and the Department of Orthopaedic Surgery Emory University School of Medicine, Atlanta, Georgia 30329, USA.

*Corresponding Author Boojala VB Reddy, Phone: 718-997-3487, Fax: 718-997-3513, e-mail: breddy@qc.cuny.edu.

International Scholarly and Scientific Research & Innovation 3(10) 2009 329 ISNI:0000000091950263
and BMP-2 injection partially cured impaired osteoblast differentiation and bone loss in aged animals [14].

The structural data revealed that the surfaces of BMPs have two prominent hydrophobic patches, the convex type II receptor-binding interface (knuckle epitope) and the concave type I receptor-binding interface (wrist epitope) [15]. The residues determining binding affinity and specificity of BMP-2 and BMPRIA were identified by mutational analysis. This suggested that the elusive binding determinants of the wrist epitope for the BMP-2/BMPRIA interaction involved the main chain amide groups of amino acids L51 and D53 with minor contribution from the hydrophobic interactions. Two hydrogen bonds are formed between L51 (main chain amide and carbonyl) of BMP-2 and Q86 of BMPRIA [7]. The core structure of BMPRII shares the same pattern of disulfide connectivity as ActRII [2]. In an earlier analysis a hypothetical complex between BMPRII and BMP-2, created by superimposing BMPRII in the position of ActRII in a ternary complex between ActRII, BMP-2, and BMPRIA, suggested that BMPRII makes similar overall ligand binding contacts to BMP-2 as does the ActRII receptor. The residues Y67, W85, and F115 of BMPRII are in the main hydrophobic patch. The data also suggested that the polar residues K81, S86, E93, and Y113 are also important binding determinants. On the other hand, H87 and Y40 confer specificity in BMPRII ligand binding [2]. The previous mutational analysis has identified A34, H39, S88, L90, and L100 residues as the binding determinants of BMP-2 for BMPRIA and ActRII [7].

The superposition of the noggin/BMP-7 complex structure onto a model of the BMP signaling complex shows that noggin binding effectively masks both pairs of binding epitopes. Noggin contains an extended N-terminal ‘clip’ segment of about 20 residues [7]. The type I receptor-binding site is obstructed by a segment of the clip domain (Q28 to D39). The hydrophobic ring of P35 of noggin inserts into a hydrophobic pocket on BMP-7 formed by W52, W55, V87, Y128 and M131, which mimics a similar insertion of F85 from BMPRIA into the hydrophobic cleft on BMP-2. The type II receptor-binding site is masked extensively by the C-terminal half of the clip segment (N40 to E48) [7, 15]. Another mutational study revealed that noggin proteins with substitutions at positions L46D, E48K, I218E essentially abolished BMP-7 binding activity in some of the variants. Furthermore, a P35R substitution diminished the binding affinity for BMP-7 [16].

Together with the aforementioned structural knowledge about the binding determinants of BMPs, BMP receptors, and noggin obtained from previous mutational studies, the available structures of the BMPs, its receptors and noggin were initially analyzed and explored to identify the critical residues involved in their interaction. In the present study LUDI de novo design method was used to computationally screen large number of commercially available compounds against the binding sites of noggin to identify the lead chemical compounds that could potentially block only BMP-noggin interaction but not the BMP interaction with its receptors. Since the BMP binding regions of BMP receptors and the BMP binding regions of noggin are similar the small molecules that bind to noggin binding epitopes and that do not bind to the BMP receptor epitopes were identified. Here, an extensive computational analysis of result was described. The experimental validation of the computational result is in progress and will be discussed elsewhere.

II. MATERIALS AND METHODS

The objective was to analyze BMP/noggin, BMP/BMP Receptors interactions from known structures of these complexes and use them to design small molecules that block the antagonist noggin binding to BMP. The employed methods included computational analysis of BMP, BMP receptors and noggin sequences, structures, and various docking procedures. The human sequences used from Swiss-Prot [17] database were: BMP-2 (P12643), BMP-7 (P18075), noggin (Q13253), BMPRIA (P36894) and BMPRII (Q13873). The structures used from Protein Data Bank (PDB) were: BMP-2 (1rew), BMP-7 (1m4u), noggin (1m4u), BMPRIA (1rew), ActRIIB (2h62) and BMPRII (2hir).

A. Amino acid sequence alignment

The sequences of BMP, BMP receptors and noggin were retrieved from UniProt [18-20] sequence database. A multiple sequence alignment for these sequences was generated using ClustalW (default parameters) [21].

B. Solvent Accessible Contact Area Calculations

BMP, BMP Receptors and the antagonist noggin structures and their complexes were analyzed to identify various residues involved in their interaction by solvent accessible contact area calculation using the method of Richmond & Richards (1978) [22]. The method gives the surface area (Å²) for each residue that can come into contact with a spherical probe of radius of 1.4 Å. The percentage difference in solvent accessible contact area (pds) of each residue in a protein on contact with another protein of the complex pair is then calculated as follows:

\[
pds \alpha = (\alpha - \alpha c) \times 100/\alpha t
\]

where \(\alpha\) is total surface area of the residue in an open chain conformation of Gly-X-Gly form.

C. Graphical Viewing and Superposing the Protein Structures

Accelrys Inc. Discovery Studio tools were used for various computational needs such as to display, superpose or to generate molecular graphics figures. Rasmol [23, 24] was also used as molecular display tool. A web based tool called Superpose [25] was used to superimpose. The application modules in Discovery Studio 1.7 which provided many powerful tools that enabled docking and scoring ligands, performing de novo design of lead compounds, and analyzing the results.

D. LUDI de novo Receptor Mode

LUDI is a method for the de novo design of ligands for proteins [26, 27]. The DS LUDI was used extensively in this work which searches fragment libraries and identifies molecules that fit the requirements of the defined interaction sites. Ligand-receptor complexes may be evaluated using the empirical scoring functions available from the LUDI algorithm. The LUDI score is a sum of five contributions: from ideal hydrogen bonds, contributions from perturbed ionic interactions (ionic interaction is the interaction of
donor/acceptor in the receptor [e.g. COO-, or NH3+]), contributions from lipophilic interactions, contributions due to the freezing of internal degrees of freedom of the ligand, contributions due to the loss of translational and rotational entropy of the ligand.

In receptor mode, LUDI searches a fragment library for complementary small molecules that best bind the defined interaction sites. During the search and fit computation LUDI also determines the energy estimates, or scores, for each conformation searched for the fragments in the library. The fragments are ranked by energy estimate, and the best are returned in the hit list. This hit list can then be inspected for the selection of candidate scaffolds. In this study, LUDI receptor mode was used against BMP-2, BMPRIA, BMPRII, and noggin which screened potential lead compounds from CAP small molecular weight compound databases that are predicted to block noggin epitopes that bind to BMP-2.

III. RESULTS

The goal was to study the BMP/noggin interaction and computationally design small molecular weight inhibitors to block the key amino acid residues of noggin to prevent noggin from binding to BMP-2. The strategy undertaken was expected to result in designing noggin-blockers without affecting the natural binding and function of BMP and its receptors. Here, the outcome of the studies are presented that led to selection of manageable number high scoring noggin binding small molecules that may block its binding to BMP-2 for further experimental studies.

A. Identification of BMP-2/Noggin Binding Regions

Since the BMP-7, BMP-2, and the noggin are homologous structures ClustalW was used to identify the corresponding equivalent residues among these sequences. BMP-7 protein sequence is highly homologous to BMP-2 with 80% of sequence identity. Since BMP-2/noggin complex structure is not available the crystal structure of BMP-7 and noggin complex (1m4u) was used to identify equivalent residues of BMP-2 that interact with noggin and vice versa. To identify the noggin interacting regions with BMP-2 the biological unit of the BMP-2 dimer structure with a noggin monomer was used. From the calculation of percent solvent accessibility contact area (%SA) of this new complex in the presence or absence of the binding partners the interacting residues of noggin with BMP-2 were identified (Table 1).

![Fig. 2 Model of trimer structure of BMP-2/BMPRIA/BMPRII. BMPRII was modeled based on its homolog ActRIIB (2h62).](image)

Table 1: The percentage of surface area of each amino acid of BMP receptors and the inhibitor Noggin involved in binding with BMP-2

<table>
<thead>
<tr>
<th>Pos</th>
<th>AA</th>
<th>%SA</th>
<th>BMPRI-IA (1tew)</th>
<th>BMP-2 (1tew)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>MET</td>
<td>11.3%</td>
<td>42 GLY 42.5%</td>
<td>10 LEU 51.7%</td>
</tr>
<tr>
<td>30</td>
<td>TYR</td>
<td>33</td>
<td>43 HIS 40.2%</td>
<td>25 ASP 22.8%</td>
</tr>
<tr>
<td>31</td>
<td>LEU</td>
<td>19.7%</td>
<td>45 PRO 29.4%</td>
<td>26 VAL 15.4%</td>
</tr>
<tr>
<td>32</td>
<td>HIS</td>
<td>54.7%</td>
<td>46 ASP 10.1%</td>
<td>27 GLY 19.5%</td>
</tr>
<tr>
<td>33</td>
<td>ILE</td>
<td>36.6%</td>
<td>67 ASP 30 28</td>
<td>TRP 19.6%</td>
</tr>
<tr>
<td>34</td>
<td>ARG</td>
<td>52.2%</td>
<td>72 THR 11 30</td>
<td>ASP 11.5%</td>
</tr>
<tr>
<td>35</td>
<td>PRO</td>
<td>88.7%</td>
<td>77 CYS 23.1%</td>
<td>31 TRP 25.9%</td>
</tr>
<tr>
<td>36</td>
<td>ALA</td>
<td>30.2%</td>
<td>79 LYS 41 33</td>
<td>VAL 31%</td>
</tr>
<tr>
<td>37</td>
<td>PRO</td>
<td>54.2%</td>
<td>81 GLU 16.2%</td>
<td>34 ALA 36.7%</td>
</tr>
<tr>
<td>38</td>
<td>SER</td>
<td>34.2%</td>
<td>82 GLY 46 35</td>
<td>35 PRO 19.6%</td>
</tr>
<tr>
<td>39</td>
<td>ASP</td>
<td>21.7%</td>
<td>84 ASP 32.4%</td>
<td>39 HIS 33.7%</td>
</tr>
<tr>
<td>40</td>
<td>ASN</td>
<td>39.3%</td>
<td>85 PHE 84.4%</td>
<td>49 PHE 48.9%</td>
</tr>
<tr>
<td>43</td>
<td>LEU</td>
<td>41.6%</td>
<td>86 GLN 55.4%</td>
<td>50 PRO 69</td>
</tr>
<tr>
<td>46</td>
<td>LEU</td>
<td>58.1%</td>
<td>88 LYS 44.6%</td>
<td>51 LEU 11.1%</td>
</tr>
<tr>
<td>47</td>
<td>ILE</td>
<td>16.1%</td>
<td>89 ASP 24.7%</td>
<td>52 ALA 34.5%</td>
</tr>
<tr>
<td>49</td>
<td>HIS</td>
<td>12.9%</td>
<td>90 SER 52.1%</td>
<td>53 ASP 91.4%</td>
</tr>
<tr>
<td>199</td>
<td>HIS</td>
<td>20.4%</td>
<td>91 PRO 11.3%</td>
<td>54 HIS 49.8%</td>
</tr>
<tr>
<td>204</td>
<td>ARG</td>
<td>15.4%</td>
<td>92 LYS 42.6%</td>
<td>57 SER 24.3%</td>
</tr>
<tr>
<td>206</td>
<td>ARG</td>
<td>38.4%</td>
<td>93 ALA 10.9%</td>
<td>59 ASN 17.6%</td>
</tr>
<tr>
<td>208</td>
<td>GLN</td>
<td>14.2%</td>
<td>94 GLN 45.8%</td>
<td>62 ILE 36.3%</td>
</tr>
</tbody>
</table>
| 209 | ARG | 25.5% | 97 ARG 21.8% | 66 LEU 23.9%

B. Identification BMP-2 Binding Regions of the BMPRIA and BMPRII.

The crystal structure of BMPRII was superimposed on to the ActRIIB of ternary complex consisting of BMP-2 dimer / BMPRIAEC / ActRIIB using a web based tool Superpose [25]. Using these superposed structures a new hypothetical ternary complex consisting of BMP-2/BMPRIAEC/BMPRII was modeled (Figure 2). The surface area (Å²) for each residue and the percent solvent accessible contact area (%SA) of the model ternary complex of BMP-2/BMPRIAEC/BMPRII and individual monomer structures were calculated, and the position (Pos) and name of the amino acid residues (AA) of both the receptors, BMPRIA and BMPRII that bind to BMP-2 were identified (Table 1).
C. Screening of CAP Small Molecular Database.

LUDI de novo design method of Accelrys Discovery Studies 1.7 was used against the noggin regions that bind to BMP. The BMP binding region of noggin was divided into four sub regions (with some overlapping residues) for LUDI runs. Region I consisted of amino acids at positions 27, 29, 30-37; region II consisted of amino acids at positions 37-46, 222-223; region III consisted amino acids at positions 47, 48, 168, 199, 204, 218-222; region IV consisted of amino acids at positions 54, 206-210. The binding site defined as a sphere of radius for each of 10.5, 10.5, 12, and 9 Å covering the amino acid in the regions I, II, III, and IV, respectively. The LUDI search against these four regions using the 70,000 small molecules in the CAP database yielded about 11,090 molecules with Ludi3 scores greater than 300. LUDI was used against the BMPRIA and BMPRII region that bind to BMP-2 and obtained 22,234 and 25,420 molecules, respectively. The small molecules that are common to either of the receptors were excluded from these molecules and the remaining 3717 molecules were unique to noggin binding. Using only these 3717 small molecules, a small library of compounds was generated and one LUDI run was performed on the entire BMP binding region of noggin using a 16 Å radius sphere. As a result, 1167 small molecules were found with Ludi3 binding scores greater than 300. A set of top 50 molecules with high scores that were distributed over the entire binding region are shown in Figure 3.

IV. DISCUSSION

From previous site directed mutagenetic studies it was observed that the mutants L46D, E48K, I218E of noggin fail to bind to BMP. Therefore, few high scoring molecules were identified in the region surrounding these important residues that may block these residues. The Fig.3 gives a cluster of 50 top consensus scoring molecules over the entire binding region and Fig. 3 B and C shows binding poses of two high scoring molecules that may block L46, E48, and I218.

Another set of LUDI runs were performed against BMP-2 residues that bind to BMPRIA and BMPRII. The idea was to exclude the molecules that are common between noggin and both the receptors.

Each of the computational technique operates by assigning varying approaches. Priorities for particular approach can limit the expectations in different techniques. A very good criteria specific for one technique could be a constraint for the others. Different computational studies are therefore desirable to acquire comparatively matching outcome. Additional computational techniques such as SCORING, GOLDDOCK, GLIDE, COMBI-GLIDE, SIMBIOSYS are planned to authenticate the results obtained with LUDI to select a manageable number of high scoring compounds for experimental verification.

V. CONCLUSION

The crystal structure of the BMP-7/noggin complex, the BMP-2/BMPRIA ectodomain complex and the extracellular domain of BMPRII monomer are known. From the analysis of structures of these complexes the key amino acids residues present in the BMP interacting region of noggin were identified. Bioinformatics and in silico drug design methods were followed to screen BMP binding region of noggin to identify small molecular weight compounds from the CAP database. The LUDI de novo design method was used for screening the potential compounds that could block noggin from interacting with BMP-2. The high scoring potential noggin binding ligands were identified along with their theoretical binding scores. Subsequently, a manageable
number of these molecules was selected for future experimental \textit{in vitro} binding assays with the purified recombinant protein. If successful, these molecules will be taken for subsequent cellular studies on BMP-induced bone formation.

\textbf{ACKNOWLEDGMENT}

S. A. author is supported by Biochemistry Graduate Teaching Fellowship, CUNY Graduate Center, New York, and CUNY Tuition Fellowship and. R.P.R.M. author is supported by Howard Hughes Medical Institute Grant to Queens College, CUNY. We acknowledge Dormitory Authority – State of New York.

\textbf{REFERENCES}

