Abstract—In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for singular differential equation in Banach space, which improved and generalize the result of related paper.

Keywords—Banach space, cone, fixed point index, singular differential equation.

I. INTRODUCTION

THE singular differential equation arises in a variety of applied mathematics and physics, the theory of singular differential equation is emerging as an important area of investigation since it is much richer than the corresponding theory of concerning equation without singular. The beam of differential equation is emerging as an important area of applied mathematics and physics, the theory of singular differential equation in Banach space, which improved and generalize the result of related paper.

In 2004, Yu [7] got the existence of at least one positive solution when \(f(x) > \theta, t \in (0,1) \). In 2003, Yao [8] got the existence of at least one positive solution when \(f(t,x) \) is semipositive and superlinear. However the result is more generally.

Let \(G(t,s) \) be the Green function of the following equation:

\[
\begin{align*}
 x'''(t) &= f(t,x(t)), t \in (0,1), \\
 x(0) &= x''(\eta) = x''(1) = 0,
\end{align*}
\]

is a singular problem in special exogenic action. In recent years, some new results concerning the three-point boundary value problems of three-order nonlinear singular differential equations have been obtained by a variety of method (see [1 - 4]). Suppose \(G(t,s) = \frac{1}{\Gamma(\alpha)} \int_{\theta}^{1} \frac{s^{\alpha-1}}{(t-s)^{\alpha}} \, ds \), then \(G(t,s) \) is a Banach space. A map \(m \in C[I;E] \cap C^{1}[0,1,E] \cap C^{2}[0,1,E] \cap C^{3}[J,E] \) is called a solution of (1.1) if it satisfies all equations of (1); if \(\theta(x,t) > \theta, t \in (0,1) \), we call \(x \) is positive solution.

In this paper, by constructing a special set and utilizing generalized noncompactness measure, \(\alpha(\cdot) \) and \(\alpha_{c}(\cdot) \) are the Kuratowski noncompactness measure in \(E \) and \(C[I,E] \) respectively.

Let \(G(t,s) \) be the Green function of the following equation:

\[
\begin{align*}
 x'''(t) &= 0, t \in (0,1), \\
 x(0) &= x''(\eta) = x''(1) = 0,
\end{align*}
\]

then

\[
G(t,s) = \begin{cases}
 \frac{ts^{2}}{2}, & 0 \leq s \leq \eta, 0 \leq t \leq s, \\
 \frac{\eta t^{2}}{2}, & 0 \leq s \leq \eta, 0 \leq s \leq t, \\
 \frac{\eta s^{2}}{2} - ts + \eta t, & 0 \leq s \leq \eta, 0 \leq s \leq t, \\
 \frac{ts^{2}}{2}, & 0 \leq s \leq \eta, 0 \leq s \leq t,
\end{cases}
\]

We first list some properties of the Green function.

(1) \(G(t,s) \geq 0, \forall t, s \in [0,1] \).

(2) \(\max_{t \in I} G(t,s) = J(s) = \left\{ \begin{array}{ll}
 \frac{1}{2}s^{2}, & 0 \leq s \leq \eta, \\
 \frac{1}{2}\eta^{2}, & \eta \leq s \leq 1.
\end{array} \right. \)

(3) \(\frac{1}{2} \geq G(t,s) \geq q(t)J(s) \geq q(t)G(t,s) \) where \(q(t) = \left\{ \begin{array}{ll}
 \eta t, & 0 \leq t \leq \eta, \\
 2\eta t(1-t) - \eta, & \eta \leq t \leq 1.
\end{array} \right. \)

We define the operator \(T_{v} : \int_{0}^{1} G(t,s)a(s)v(s)ds, v \in C[I,R] \)

where \(G(t,s) \) and \(a(s) \) are same to above mentioned. For the convenience sake, we list some lemmas and conditions:

Lemma 1.1 [9] Suppose \(T : C[I,R] \to C[I,R] \) is a completely continuous and positive operator, there exists \(v_{0} \in Q_{1} = \{ v \in C[I,R] : v(t) \geq 0, \forall t \in [0,1] \} \) with \(v_{0} \neq 0 \) such that \(\lambda_{1}Tv_{0} = v_{0}(\lambda_{1} > 0) \), for any \(v \in Q_{1} \) \(\{ \theta \} \), there exists natural number \(n = n(v) \) and real number...
α₀(υ) > 0, β₀(υ) > 0 such that α₀υ ≤ Tⁿυ ≤ β₀υ. For ∀υ ∈ Q₁, if υ ≠ μυ(μ ≥ 0), then λ₁Tv ≠ υ, λ₁Tv ≠ υ.

Remark The operator T defined by (2) satisfied all conditions of lemma 1.1. λ₁ = (r(T))⁻¹ is the first eigenvalue of T, T has no other positive eigenfunction except one corresponding to λ₁.

Lemma 1.2 Suppose K is a cone in real Banach space, R > r > 0, Kₕ = {x ∈ K | r ≤ x ≤ R}. If A : Kₕ → K is a strictly set contraction, and satisfied one of the following two cases:

Ax ≥ x, ∀x ∈ K, ||x|| = r; Ax ≥ x, ∀x ∈ K, ||x|| = R,
or

Ax ≥ x, ∀x ∈ K, ||x|| = r; Ax ≥ x, ∀x ∈ K, ||x|| = R,

then A has at least one fixed point in Kₕ.

(H₁) f ∈ C[P, P], for any r > 0, f is uniformly continuous on P ∩ Bₙ, where Bₙ = {x ∈ E ||x|| ≤ r}, there exists a constant Lₙ such that α(f(D)) ≤ Lₙα(D), ∀D ⊂ P ∩ Bₙ, where Lₙ : 0 ≤ Lₙ ≤ 2 max α(f).

(H₂) For x > θ, there exists P₀ such that f(x) > 0, if x ∈ P then \(\lim_{||x|| → +∞} f(x) > λ₁ \), where λ₁ is the first eigenvalue of the operator T.

(H₃) If x ∈ P, then \(\lim_{||x|| → 0} f(x) \) \(\leq \frac{λ₁}{N} \).

(H₄) If x ∈ P, then \(\lim_{||x|| → +∞} f(x) \) \(\leq \frac{λ₁}{N} \).

(H₅) For x > θ, there exist \(\varphi ∈ P₀ \) such that f(x) > 0, if x ∈ P then \(\lim_{||x|| → 0} \varphi(x) \) > λ₁.

(H₆) There exist \(r₀ > 0 \) such that \(\sup_{||x|| ≤ r₀} ||f(x)|| \) \(< \frac{2r₀}{N} \left(\int_{0}^{1} a(s)ds \right)^{⁻¹} \).

(H₇) For x > θ, there exist \(r₀ > 0 \) and \(\varphi ∈ P₀ \) with \(||\varphi|| = 1 \) such that f(x) > 0, moreover if \(g(t)r₀ \) ≤ ||x|| ≤ r₀ then \(f(x) > αr₀ \), where \(α = \{C \int_{T}^{1} J(s)α(s)ds \}^{-¹} \), C = \(\{ηr, 2ηr²\}_{max} \).

II. Conclusion

We consider the equivalent problem of (1)

\[Ax(t) = \int_{0}^{t} G(t, s)a(s)f(x(s))ds \]

Let Q = \{x(t) ∈ C[I, E] ||x(t)|| ≥ θ, t ∈ I\}, then Q is cone in C[I, E]. By the continuity of G(t, s) and f, we can get A : Q → Q is continuous. Similar to the boundary value problem of ordinary differential equation in scalar space, we can get the problem (1.1) has solution in C[I, E] ∩ \(C^1[0, 1], E \) ∩ \(C^2[0, 1], E \) ∩ \(C^3[I, E] \) if and only if \((Ax)(t) = x(t) \) has fixed point, so we only need to show A has at least one nontrivial fixed point.

In order to overcome the difficulty caused by singularity, we construct a cone

\[K = \{x ∈ Q \mid x(t) ≥ q(t) ||x||, \forall t ∈ I\} \]

obviously K is a cone in E and K ⊂ Q.

Next we show AK ⊂ K, i.e. A is a self-mapping in K. By the property of G(t, s), we can get

\[Ax(t) = \int_{0}^{t} G(t, s)a(s)f(x(s))ds \]

\[≤ \int_{0}^{t} J(s)a(s)f(x(s))ds, \forall t ∈ I, \]

so

\[\|Ax(t)\| ≤ \int_{0}^{t} J(s)a(s)f(x(s))ds. \]

If x ∈ K, then

\[Ax(t) = \int_{0}^{t} G(t, s)a(s)f(x(s))ds \]

\[≥ q(t)\int_{0}^{t} J(s)a(s)f(x(s))ds \]

\[≥ q(t)\|Ax(t)\|, \]

so AK ⊂ K. Note that 0 < G(t, s) < \(\frac{1}{2} \), similar to the proof of lemma in thesis [11], for ∀r > 0, we can show A : Kₕ → K is a strictly set contraction, where Kₕ = \{x ∈ K : \|x\|c < r\}. Base the work upon the preliminary, we give the following theorem:

Theorem 2.1 Suppose conditions (H₁) – (H₃) hold, or conditions (H₄), (H₅), (H₆), (H₇) hold, the problem (1) has at least one fixed point.

Proof We first suppose (H₁) – (H₃) are satisfied. By (H₃) it is easy to see there exist \(r₁ : 0 < r₁ < 1 \) and \(ε : 0 < ε < λ₁ \) such that

\[||f(x)|| \leq \frac{λ₁ - ε}{N} ||x||, \forall x ∈ P, ||x|| ≤ r₁, \]

where N is the regular constant of cone P, now we show

\[Ax ≥ x, \forall x ∈ K, ||x|| = r₁. \]

In fact, if there exist \(x₁ ∈ K \) with \(||x₁||c = r₁ \) such that \(Ax₁ ≥ x₁ \), then we have \(\theta ≤ x₁(t) ≤ (A(x₁))(t), t ∈ I \). Let \(v₁(t) = ||x₁(t)|| \), then \(v₁(t) ∈ C[I, R] \), by the regularity of cone and (3), we can get

\[v₁(t) = ||x₁(t)|| \]

\[≤ N \int_{0}^{1} G(t, s)a(s)||f(x₁(s))||ds \]

\[≤ (λ₁ - ε)\int_{0}^{1} G(t, s)a(s)||x₁(s)||ds \]

\[= (λ₁ - ε)(Tv₁)(t), \]

so

\[v₁(t) ≤ (λ₁ - ε)(Tv₁)(t), t ∈ [0, 1]. \]

Next we show \(v₁(t) ≡ 0, t ∈ [0, 1] \). If this is not true, then \(v₁(t) ≠ 0, t ∈ [0, 1] \), note that \(v₁(t) ≥ 0, t ∈ [0, 1] \), so \(v₁(t) ≤ (λ₁ - ε)^n(T^n v₁)(t) \), correspondingly

\[T^n \|v₁(t)\| \geq (\frac{1}{\|v₁(t)\|})^n(T^n v₁)(t) \]

\[≥ \frac{1}{(λ₁ - ε)^n}, n = 1, 2, 3..., \]

According to Gelfand formula

\[r(T) = \lim_{n→∞} \|T^n\| ≤ \lim_{n→∞} \frac{1}{(λ₁ - ε)^n} = \frac{1}{λ₁ - ε} > \frac{1}{λ₁}. \]
This is in contradiction with $r(T) = \frac{1}{2}$, so $v_1(t) \equiv 0, t \in [0, 1]$, but this is in contradiction with $\| x_1 \| = r_1$, so (6) hold. Let

$$ (T_3v)(t) = \int_0^1 G(t, s)\alpha(s)v(s)ds, v \in C[0, 1], $$

where $\delta \in (0, \frac{1}{2})$, it is easy to see $T_3 : C[0, 1] \to C[0, 1]$ is completely continuous and positive linear operator, it is satisfied all conditions of lemma 1.1, so $r(T_3) > 0, \lambda_3 = (r(T_3))^{-1}$ is the first eigenvalue of T_3. T_3 has no other positive eigenfunction except one corresponding to λ_3. Choose $\delta_0 \in (0, \frac{1}{2})(n = 1, 2, ...)$ such that $\delta_1 \geq \delta_2 \geq ... \geq \delta_n \geq ...$ with $\delta_n \to 0(n \to +\infty)$. For $m > n, v \in Q_1$, we have $T_3T_3v(t) \leq T_3T_3v(t) \leq T_3v(t) \in I$, so $r(T_3) \leq r(T)$. Let $\lambda_n = (r(T_3))^{-1}$, so $\lambda_n \geq \lambda_3 \geq \lambda_1$, where λ_1 is the first eigenvalue defined by (2). Let $\lim_{n \to +\infty} \lambda_n = \lambda_1$, now we show $\lambda_1 = \lambda_1$.

We first show λ_1 is eigenvalue of T. Let v_{λ_1} is a eigenfunction of operator T_{λ_1} corresponding to the first eigenvalue λ_1, and satisfied $\| v_{\lambda_1} \| = 1$, i.e.

$$ v_{\lambda_1}(t) = \lambda_1 \int_0^1 G(t, s)\alpha(s)v_{\lambda_1}(s)ds, \quad (8) $$

Since $G(t, s)$ is uniformly continuous, we have $\{v_{\lambda_1}\}$ is equicontinuous and uniformly bounded, by Arzela-Ascoli theorem, no loss of generality we assume $v_{\lambda_1}(t) \to v_0(t)(n \to +\infty)$, so $v_0 \in Q_1$ and $\| v_0 \| = 1$, by (8) we have

$$ \tilde{\lambda}_1 = \lambda_1 \in \tilde{\lambda}_1 = \lambda_1 \int_0^1 G(t, s)\alpha(s)v_0(s)ds = \lambda_1 T_3v_0(t), $$

so $\tilde{\lambda}_1$ is eigenvalue of T, notice that $v_0 \in Q_1$ and Remark, we have $\lambda_1 = \lambda_1$.

By (H2), there exist $R_1 > 0$ such that $\{v(x) \geq (\lambda_1 + \epsilon)\alpha(x), x \in P, \| x \| \geq R_1, \}$ (9)

According to previous discussion, there exist $\delta \in (0, \frac{1}{2})$ such that $\lambda_1 \leq \lambda_3 = (r(T_3))^{-1} < \lambda_1 + \epsilon$, take $R_3 = \max\{R_1, \frac{\delta}{\sqrt{1 - \frac{\delta^2}{2}}, \}}$, where N is normal constant of cone P, now we show

$$ Ax \not\subseteq x, \forall x \in K, \| x \| = R_2. $$

In fact, if there exist $x_2 \in K$ with $\| x_2 \| = R_2, R_2 = \| x_2 \| \neq R_2$, then $x_2(t) \geq q(t) \| x_2 \| \| t \| \in I, P$ is normal, so $\| x_2(t) \| \geq q(t) \| x_2 \| \geq R_1, t \in [0, \frac{1}{2}]$. Let $v_2(t) = \varphi(x_2(t))$, by (9),

$$ v_2(t) = \varphi(x_2(t)) \geq \varphi((x_2)')(t)
\geq \varphi(\int_0^1 G(t, s)\alpha(s)f(x_2(s))ds)
\geq \int_0^1 G(t, s)\alpha(s)f(x_2(s))ds
\geq (\lambda_1 + \epsilon)\int_0^1 G(t, s)\alpha(s)\varphi(x_2(s))ds
\geq (\lambda_1 + \epsilon)(T_3v_2)(t) $$

so $v_2(t) \geq \lambda_1 + \epsilon(T_3v_2)(t), t \in I$, note that $v_2(t) \geq 0, t \in I$, by lemma 1.1, there exist $\mu \geq 0$ such that $v_2 = \mu v_2$, where v_2 is positive eigenfunction of operator T_3 corresponding to the first eigenvalue λ_2. If $\mu = 0$, then $v_2(t) \equiv 0, t \in I$, this is in contradiction with $\| x_2 \| = R_2$; If $\mu > 0$, by (11), $\mu v_2 = \varphi(x_2) \geq (\lambda_1 + \epsilon)T_3v_2 = \mu(\lambda_1 + \epsilon)v_2$, so $v_2 \geq (\lambda_1 + \epsilon)v_2$, note that $\lambda_2 < \lambda_1 + \epsilon$, this is in contradiction with $v_2 = \lambda_1 T_3v_2$, so (10) is proved. To sum up, by (6),(10) and lemma 1.2, A has a fixed point in K_{T_3}, by (H4), there exist $R_3 > 1$ and $\epsilon(0 < \epsilon < \lambda_3)$ such that

$$ \| f(x) \| \leq \frac{\lambda_1 - \epsilon}{N} \| x \|, \forall x \in P, \| x \| \geq R_3, $$

by (H1), $\sup\{\| f(x) \| \| x \| = R_3 \} = b < +\infty$, so

$$ \| f(x) \| \leq \frac{\lambda_1 - \epsilon}{N} \| x \| + b, \forall x \in P. $$

Let $W = \{x \in K : \epsilon \geq x \geq 1\}$, next we show W is bounded. If $x \in W$, then $\theta < x(t) \leq (\epsilon(x))-1$, let $v(t) = \| x(t) \|$, by the normality of cone P and (12) we can get

$$ v(t) = \| x(t) \|
\leq N \int_0^1 G(t, s)\alpha(s) \| f(x(s)) \|ds
\leq (\lambda_1 - \epsilon)T_3v(t) + M, $$

where $M = \max\{\nabla \int_0^1 G(t, s)\alpha(s)ds, so ((I - (\lambda_1 - \epsilon)T)v(t) \leq M, t \in [0, 1], \lambda_1$ is the first eigenvalue of T, $r((I - \lambda_1 - \epsilon)T) = \frac{\lambda_1 - \epsilon}{N} < 1, so (I - (\lambda_1 - \epsilon)T)^{-1}$ exist and

$$(I - (\lambda_1 - \epsilon)T)^{-1} = I + (\lambda_1 - \epsilon)T + ((\lambda_1 - \epsilon)T)^2 + ... + ((\lambda_1 - \epsilon)T)^n + ... $$

so $t : Q_1 \to Q_1$ we have $(I - (\lambda_1 - \epsilon)T)^{-1} : Q_1 \to Q_1$, so $v(t) \leq (I - (\lambda_1 - \epsilon)T)^{-1}M, t \in [0, 1], i.e. W$ is bounded. Take $R_4 > \max\{R_3, supW\}$, we can get

$$ Ax \not\subseteq x, \forall x \in K, \| x \| = R_4. $$

By (H5), there exist r_2 and $\epsilon(0 < \epsilon < \lambda_1)$ such that

$$ \varphi(f(x)) \geq (\lambda_1 + \epsilon)\varphi(x), \forall x \in P, \| x \| \leq r_2, $$

we show

$$ Ax \not\subseteq x, \forall x \in K, \| x \| \leq r_2. $$

If it is false, then exist $x_2 \in K$ with $\| x_2 \| = r_2$ such that $Ax_2 \leq x_2$, by (14), we can get

$$ \varphi(x_2) \geq \varphi(Ax_2) $$

$$ \int_0^1 G(t, s)\alpha(s)\varphi(f(x(s)))ds $$

$$ \geq (\lambda_1 + \epsilon)T\varphi(x_2), $$

so $\varphi(x_2) = \lambda_1 T\varphi(x_2)(t), t \in I$. Note that $\varphi(x_2) \geq 0, t \in I$, by lemma 1.1 there exist $\mu \geq 0$ such that $\varphi(x_2) = \mu v_2$. If $\mu = 0$, then $\varphi(x_2)(t) = 0, t \in I$, so $x_2(t) \equiv 0$, this is in contradiction with $\| x_2 \| = r_2$; if $\mu > 0$, by (16) we can get $\mu v_2 = \varphi(x_2) \geq (\lambda_1 + \epsilon)T\varphi(x_2) = \mu(\lambda_1 + \epsilon)v_2$, so $v_2 \geq (\lambda_1 + \epsilon)v_2$, so (15) is proved. By (13),(15) and lemma 1.2, A has a fixed point in K_{T_3}, and the theorem is proved.
Theorem 2.2 Suppose P is a cone in E, and conditions $(H_1), (H_2), (H_3), (H_4)$ are satisfied, the problem (1) has at least two positive solutions.

Proof: Take cone K in E, similar to theorem 2.1, we can show $A(K) \subset K$, by $(H_2), (H_5)$, take $R > r_0 > r > 0$ such that

$$Ax \not\in x, \forall x \in K, \|x\| \leq r,$$ \hspace{1cm} (17)

$$Ax \not\in x, \forall x \in K, \|x\| \leq R.$$ \hspace{1cm} (18)

On the other hand, we can show

$$Ax \not\in x, \forall x \in K, \|x\| \leq r_0.$$ \hspace{1cm} (19)

In fact, if there exist $x_0 \in K$ with $\|x_0\| = r_0$ such that $Ax_0 \geq x_0$, so we can get $\theta \leq x_0(t) \leq (Ax_0)(t), t \in I$, by the normality of cone and (H_6),

$$\|x_0(t)\| \leq N \int_0^1 G(t,s)a(s)\|f(x_0(s))\|ds$$

$$\leq \frac{1}{2}N \int_0^1 a(s)\|f(x_0(s))\|ds$$

$$\leq r_0, \forall t \in [0, 1],$$

so $\|x_0\| < r_0$, this is in contradiction with $\|x_0\| = r_0$, so (19) is proved.

Since A is a strictly set contraction in $K_{r_0,R} = \{x \in K \mid r_0 \leq \|x\| \leq R\}$ and $K_{r,r_0} = \{x \in K \mid r \leq \|x\| \leq r_0\}$, by (17) - (19) and lemma 1.2, A has fixed point x_1 in $K_{r_0,R}$ and x_2 in K_{r,r_0} respectively, they are all positive solutions of problem (1), by (19), $\|x_1\| \neq r, \|x_2\| \neq r_0$, so problem (1) has at least two positive solutions.

Theorem 2.3 Suppose E is a cone in P, conditions $(H_1), (H_2), (H_3), (H_4)$ are all satisfied, then problem (1) has at least two positive solutions.

Proof: Take cone K in E, similar to theorem 2.1, we can show $A(K) \subset K$, by (H_2) and (H_5), take $R > r_0 > r > 0$ such that

$$Ax \not\in x, \forall x \in K, \|x\| \leq r,$$ \hspace{1cm} (20)

$$Ax \not\in x, \forall x \in K, \|x\| \leq R.$$ \hspace{1cm} (21)

On the other hand, we can show

$$Ax \not\in x, \forall x \in K, \|x\| \leq r_0.$$ \hspace{1cm} (22)

In fact, if there exist $x_0 \in K$ with $\|x_0\| = r_0$ such that $Ax_0 \geq x_0$, so we can get $\theta \leq x_0(t) \leq (Ax_0)(t), t \in I$, consequently

$$\varphi((Ax_0)(t)) \leq \varphi(x_0(t)) \leq r_0,$$ \hspace{1cm} (23)

since $x_0 \in \partial B_{r_0} \cap K$, we have $q(t)r_0 \leq \|x_0(t)\| \leq r_0$, take τ satisfying $\tau < \eta < 1 - \tau$, for $t \in (\tau, 1 - \tau)$, by (H_7)

$$\varphi((Ax_0)(t)) = \int_0^1 G(t,s)a(s)\varphi(f(x_0(s)))ds$$

$$> a_0q(t) \int_\tau^{1-\tau} J(s)a(s)\varphi(f(x_0(s)))ds$$

$$> a_0(\eta, 2\eta^2)_{\text{max}} \int_\tau^{1-\tau} J(s)a(s)\varphi(f(x_0(s)))ds$$

$$= r_0.$$

This is in contradiction with (23), so (22) is proved.