Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract—A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords—Noise signal, pulse interference, signal power, spectrum width, detection.

I. INTRODUCTION

This paper presents a method of measurement of power of components of input mix of the noise signal and pulse interference.

In various applications there is a problem of measurement of characteristics of signal in presence of interferences [1], [2].

In practice of radio measurements for an estimation of power of weak radio signals wide application was received with radiometric measuring instruments (radiometers). Radiometers are used in radio astronomy, a passive radar-location and at antenna measurements. There is actual problem of measurement of noise in radio engineering systems. In all specified cases of use of radiometric receivers, on result of measurements essential influence the external electromagnetic influences shown in a measuring section in the form of pulse interferences.

The algorithm developed on the basis of this method, can be used, for example, in the structure of radiometer at radio-astronomical and other precision measurements of power of noise signals of a small level in the presence of pulse interference with simultaneous measurement of its mean power [3]-[7].

II. PRINCIPLE OF ALGORITHM WORK

In Fig. 1 the block diagram of the offered algorithm of measurement of power of noise signal and pulse interference is presented.

In the input of the detector (D) the additive mix of the noise signal and pulse interference.

In Fig. 2 realization of additive mix of the noise signal and pulse interference from the output of high-frequency (HF) section of measuring system is present.

In Fig. 3 spectrum of additive mix of the noise signal and pulse interference from the output of high-frequency (HF) section of measuring system is presented.

Fig. 1 Block diagram of the algorithm of measurement of power of noise signal and pulse interference

Fig. 2 Realization of additive mix of the noise signal and pulse interference from the output of high-frequency (HF) section of measuring system
The voltage in the output of the detector (D) contains a constant component and noise component, caused by sum of low frequency fluctuations of noise signal and pulse interference [6].

Constant component is extracted by the first low-pass filter (LPF 1) and pass in the inverse input of the first adder (\(\sum_1\)). In Fig. 4 spectrum of constant component from the output of the first low-pass filter (LPF 1) is shown.

In the forward input of the first adder (\(\sum_1\)) we have signal from the output of detector (D). Therefore, in the output of the first adder (\(\sum_1\)) the fluctuation component of the signal from the output of detector (D) is extracted.

The voltage in the output of the square-law device (\(X_2\)) contains a constant component is proportional to the mean power of pulse interference and small low frequency fluctuations of noise signal. In Fig. 5 spectrum of constant component and small low frequency fluctuations of noise signal from the output of the square-law device (\(X_2\)) is shown.

This component is extracted by the second low-pass filter (LPF 2) and thru attenuator (\(A_2\)) pass in the inverse input of the second adder (\(\sum_2\)) and in the second input of the block of registration. In Fig. 6 spectrum of constant component from the output of the second low-pass filter (LPF 2) is shown.

In the forward input of the second adder (\(\sum_2\)) pass the voltage from the output of the first low-pass filter (LPF 1), proportional to the total average power of noise signal and pulse interference. Therefore, the voltage in the output of the second adder (\(\sum_2\)) is proportional to the subtract of the constant components of the output voltage of the first low-pass filter (LPF 1) and the output voltage of the second low-pass filter (LPF 2).

The transfer factor of attenuator (\(A_2\)) must be chosen so that at switched off source of noise signal and switched on source of pulse interference the voltage on the output of the second adder (\(\sum_2\)) equal zero. Thus, the voltage in the first input of the second adder (\(\sum_2\)) does not depend on a source of pulse interference. As a result the voltage in the second input of the block of registration depends on the power of pulse interference.

III. SIMULATION RESULTS

In this section, we give simulation results for the power measurement algorithm of the input mix components of the noise signal and pulse interference, based on the method described in the previous sections.

The offered algorithm is based on modeling of work of typical elements of a low-frequency section of measuring
system [8]-[19]: the square-law device, the first low-pass filter, the first adder, the second low-pass filter, the second adder and the block of registration. It is realized in program environment LabVIEW 7.0 [20]. The pulse interference was modeled by a square pulse of constant amplitude and duration with radio frequency carrier. The noise signal from the output of a high-frequency section was modeled by white Gaussian noise from standard library of LabVIEW 7.0 passed through the band-pass filter. On the input we have the additive mix of a noise signal and pulse interference. We vary amplitude and duration of a pulse interference, and dispersion of noise in the input. Relative pulse duration: \(\tau_1=0.025 \), \(\tau_2=0.075 \) and \(\tau_3=0.15 \).

Dependence of error of measurement of average power of noise signal \(e_n \) on the ratio interference/(noise signal) \(\rho \) (see Fig. 7) has been investigated.

Here \(e_n \) - relative error of measurement of average power of noise signal \(e_n=\frac{\sigma_s^2-\sigma_n^2}{\sigma_n^2} \), where \(\sigma_s^2 \) - average power of input noise signal, \(\sigma_n^2 \) - estimation of average power of noise signal in the output; \(\rho=\sigma_s^2/\sigma_n^2 \) - the ratio of the average power of pulse interference in the input to the average power of noise signal in the input.

Besides, in Fig. 7 is shown \(e_1 \) - a relative error of measurement of average power of noise signal in the presence of pulse interference without any additional processing. \(e_1 \) is defined by relation \(e_1=\frac{\sigma_s^2-\sigma_n^2}{\sigma_n^2} \), where \(\sigma_n^2 \) an estimation of average power of mix.

For convenience of the analysis of the obtained dependences, relative error of measurement of average power of noise signal \(e_n \) and \(e_1 \) are shown in Fig. 7.

Dependence of error of measurement of average power of pulse interference \(e_p \) on the ratio interference/(noise signal) \(\rho \) (see Fig. 8) has been investigated.

Here \(e_p \) - relative error of measurement of average power of pulse interference \(e_p=\frac{(\sigma_p^2-\sigma_{np}^2)}{\sigma_p^2} \), where \(\sigma_{np}^2 \) - estimation of average power of pulse interference in the output.

Besides, in Fig. 8 is shown \(e_2 \) - a relative error of measurement of average power of pulse interference in the presence of noise signal without any additional processing. \(e_2 \) is defined by relation \(e_2=\frac{\sigma_s^2-\sigma^2}{\sigma_n^2} \), where \(\sigma^2 \) an estimation of average power of mix.

For convenience of the analysis of the obtained dependences, relative error of measurement of average power of pulse interference \(e_p \) and \(e_2 \) are shown in Fig. 8.

From Fig. 8 it is seen, that for relative pulse duration \(\tau_1=0.025 \), \(\tau_2=0.075 \) and \(\tau_3=0.15 \) for \(\rho \geq 5 \) dB relative error of measurement of average power of pulse interference \(e_p \) not exceed 10 %. For \(\rho \geq 15 \) dB relative error of measurement of average power of pulse interference \(e_p \) not exceed 1 % for duration \(\tau_1=0.025 \), \(\tau_2=0.075 \) and \(\tau_3=0.15 \).

As it seen from Fig. 8, if we measure power of pulse interference in the presence of noise signal without offered method, error of measurement of average power of noise signal (curve \(e_1 \) in Fig. 7) many times over exceeds corresponding error in case of using the method (curve \(e_2 \) in Fig. 7).

IV. CONCLUSION

In this paper, we have presented the power measurement algorithm of the input mix components of the noise signal and pulse interference. Results are confirmed by numerical experiments. It is shown, that with increasing of the ratio interference/(noise signal) the error of measurement of the average power of noise signal increases. Application of the considered algorithm allows receiving more than tenfold increase of accuracy of measurement of average power of noise signal. Results of work have practical value for
designing real systems of measurement of power of noise signals in the presence of pulse interferences.

ACKNOWLEDGMENT

The research was carried out in Nizhni Novgorod State University in frames of Priority National Project “Education”. The investigations were supported by Program: “Scientific and scientific-pedagogical personnel of innovative Russia” for 2009–2013 years (State–contract No. P2606).

REFERENCES

