Prediction of Soil Hydraulic Conductivity from Particle-Size Distribution

A.F. Salarashayeri and M. Siosemarde

Abstract—Hydraulic conductivity is one parameter important for predicting the movement of water and contaminants dissolved in the water through the soil. The hydraulic conductivity is measured on soil samples in the lab and sometimes tests carried out in the field. The hydraulic conductivity has been related to soil particle diameter by a number of investigators. In this study, 25 set of soil samples with sand texture. The results show approximately success in predicting hydraulic conductivity from particle diameters data. The following relationship obtained from multiple linear regressions on data ($R^2 = 0.52$):

$$K_s = 10.06 + 118.54(d_{10}) - 12.50(d_{50}) - 7.32(d_{20})$$

Where d_{10} and d_{50}, and d_{20} are the soil particle diameter (mm) that 10%, 50% and 60% of all soil particles are finer (smaller) by weight and K_s, saturated hydraulic conductivity is expressed in m/day. The results of regression analysis showed that d_{10} play a more significant role with respect to K_s, saturated hydraulic conductivity (m/day), and has been named as the effective parameter in K_s calculation.

Keywords—Hydraulic conductivity, particle diameter, particle-size distribution and soil

I. INTRODUCTION

SATURATED hydraulic conductivity represents the ability of a porous media to transmit water through its voids [2, 13, 15]. Since, direct measurement of hydraulic conductivity is time consuming and costly, indirect methods such as predicting from readily available soil properties e.g. particle-size distribution have been developed [2, 5, 16, 19 & 27]. Many different techniques have been proposed to determine estimated saturated hydraulic conductivity, including field methods, laboratory methods and calculations from empirical formulae [22]. Although in hydromechanics, it would be more useful to characterize the diameters of pores rather than those of the grains, the pore size distribution is very difficult to determine, so that approximation of hydraulic properties are mostly based on the easy-to-measure grain size distribution as a substitute [7]. There have been attempts to estimate saturated hydraulic conductivity based on particle-size distribution (PSD) [3, 16, 23, 25, 26, 27]. Freeze and Cherry (1979) has long been recognized that hydraulic conductivity is related to the grain-size distribution of granular porous media [9]. Hazen (1982) proposed the following relationship between saturated hydraulic conductivity and soil particle diameter:

$$K_s = c(d_{10})^2$$ (1)

Where K_s is expressed in cm/sec, c is a constant that varies from 1.0 to 1.5, and d_{10} is the soil particle diameter (mm) such that 10% of all soil particles are finer (smaller) by weight [8 & 11]. Shepherd (1989) extended Hazen’s research by performing power regression analysis [20].

Also Uma et al. (1989) suggested an equation to estimate the Ks and transmissivity of sandy aquifers of the same form as Hazen Equation [24]. Puckett et al. (1985) sampled six soils at seven different locations in the Alabama lower coastal plain [17], and used regression analysis to determine that percentage of clay sized particles was the best predictor of Ks. Rawls and Brakensiek (1989) used field data across the U.S. to develop a regression equation that relates porosity, and the percentages of sand and clay-sized particles in the sample to K_s [18]. Jabro (1992) estimated K_s from grain-size and bulk density data [12].

Ahuja et al. (1989) estimated Ks using the generalized form of the Kozeny-Carmen equation [1]. Alyamani and Sen (1993) proposed the relationship between saturated hydraulic conductivity and soil particle diameters for 32 sandy soil samples obtained in Saudi Arabia and Australia with the equation [2]:

$$K_s = 1.505(L_o + 0.025(d_{10} - d_{90}))^2$$ (2)

Where K_s is expressed in cm/sec, L_o is the x-intercept of the straight line formed by joining d_{10} and d_{90} of the grain-size distribution curve (mm), d_{90} is the mean grain-size for which 50% of the particles are finer by weight (mm). Sperry and Peirce (1995) developed a linear model to estimate K_s based on grain size, shape, and porosity [21]. [14] sought to improve upon K_s prediction methods by quantifying the characteristics of the pore spaces at a microscopic scale. [8] developed multiple linear regression for southeastern U.S. sandy soils based on regional soil data.

[10] developed a new model to estimate saturated hydraulic conductivity from soil structural properties derived from water retention curve.

[5] reported that considerable success in predicting hydraulic conductivity from PSD data of soils. [13] reported that the lower content of both silt and organic matter and lower values of bulk density had increased K_s.

The results showed that the hydraulic conductivities calculated by the USBR and Slitcher methods are in all cases lower than for the other methods [6, 28 & 29]. Hazen formula which is based only on the d_{10} particle size is less accurate than the Kozeny-Carman formula which is based on the entire particle size distribution and particle shape [4 & 29].

A.F. Salarashayeri is with the Sama technical and vocational training school, Islamic Azad University, Mahabad Branch, Mahabad, Iran.

M. Siosemarde is with the Department of Water Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran (e-mail: marof_33m@yahoo.com).
The aim of the study was to determine relationship between saturated hydraulic conductivity and particle-size distribution.

II. MATERIALS AND METHODS

The 25 sets of soil samples were collected to estimate hydraulic conductivity based on particle-size distribution (PSD). Standard methods were applied to investigate particle size distribution (grain size curve), and finally determine of parameters of d_{10}, d_{50} and d_{90}. Where d_{10}, d_{50} and d_{90}, are the soil particle diameter (mm) that 10%, 50% and 60% of all soil particles are finer (smaller) by weight.

Soil texture was classified according to the International Society of Soil Science (ISSS) classification system. The soil was sand.

The values of parameters of d_{10}, d_{50} and d_{90} and saturated hydraulic conductivity are summarized in Table 1. The mean values of d_{10}, d_{50} and d_{90} were 0.253, 0.707 and 0.936 [mm], respectively, also the mean values of saturated hydraulic conductivity was 24.38 (m/day).

In this study saturated hydraulic conductivity was measured by the constant head method. The samples were first wetted by capillarity for 24 hours. This was done from the bottom so that air could escape from the upper surface. The water is then allowed to flow through the soil with maintaining a constant pressure head and saturated hydraulic conductivity was measured when outflow rate becomes constant.

The results were analyzed with SPSS 16.0 and EXCEL software with statistics such as Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Bias Error (MBE), Mean Absolute Error (MAE), and Relative Error (RE). Comparison of observed vs. predicted values of conductivity (m/day), with 0.719 R, 4.06 RMSE, 3.32 MAE and 13.62 RE.

The following equations for K_s, saturated hydraulic conductivity (m/day), were obtained from multiple regressions on data.

$$K_s = 8.91 + 6.08 (d_{10})$$

$$K_s = 16.88 + 10.60 (d_{50})$$

$$K_s = 16.55 + 8.32 (d_{90})$$

$$K_s = 16.16 + 121.5 (d_{90})^2$$

$$K_s = 20.90 + 6.52 (d_{90})^3$$

$$K_s = 20.79 + 3.84 (d_{90})^2$$

$$K_s = 10.14 + 114.67 (d_{90}) - 20.93 (d_{90})$$

$$K_s = 9.80 + 116.39 (d_{90}) - 15.92 (d_{90})$$

$$K_s = 16.68 - 2.85 (d_{90}) + 10.38 (d_{90})$$

$$K_s = 10.06 + 118.54 (d_{90}) - 12.50 (d_{90}) - 7.32 (d_{90})$$

Where d_{10}, d_{50} and d_{90}, are the soil particle diameter (mm) that 10%, 50% and 60% of all soil particles are finer (smaller) by weight and K_s, saturated hydraulic conductivity is expressed in m/day.

Table II was indicated the various statistics of equations mentioned above.

The results showed as per the table the equation (16) was the best model for predicting K_s, saturated hydraulic conductivity (m/day), with 0.719 R, 4.06 RMSE, 3.32 MAE and 13.62 RE. Comparison of observed vs. predicted values of saturated hydraulic conductivity obtained from the equation (16) as a 1:1 scale has been depicted in figure (1) that indicates good match.

$$\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} \left| P_i - O_i \right|$$

$$\text{RE} = \left(\frac{\text{MAE}}{O_{ave}} \right) \times 100$$

where R is the Correlation Coefficient; RMSE is the Root Mean Square Error; MAE, Mean Absolute Error and RE, is the Relative Error.
The results showed that among single parameter linear equations (equation 7, 8 and 9) in this study, the equation that predicted K_s, saturated hydraulic conductivity (m/day), from d_{10} estimated better (less prediction error) than d_{50} and d_{60} with 0.621 R; 4.58 RMSE; 3.68 MAE; and 15.08 RE and the equation that predicted K_s, from d_{50} and d_{60} estimated with larger prediction error and the higher trend is evident between K_s and d_{10}. The results of single parameter regression analysis showed that when d_{10}, d_{50} and d_{60} increase, K_s, saturated hydraulic conductivity (m/day), increases. The results showed that among single parameter quadratic equations (equation 10, 11 and 12) in this study, the equation that predicted K_s, saturated hydraulic conductivity (m/day), from d_{10} estimated better (less prediction error) than d_{50} and d_{60} with 0.617 R; 4.60 RMSE; 3.74 MAE; and 15.33 RE. Comparison between linear and quadratic single parameter equations showed K_s, saturated hydraulic conductivity predicted from linear equations, estimated rarely better than quadratic single parameter equations.

Also the results showed that among tow parameter linear equations (equation 13, 14 and 15), the equation 13 that predicted K_s, from d_{10} and d_{50} (without d_{60}) estimated better than other tow parameter equations with 0.715 R; 4.09 RMSE; 3.37 MAE; and 13.82 RE and K_s predicted based on d_{50} and d_{60} (without d_{10}) estimated with largest prediction error. Then it is concluded that d_{10} play a more significant role with respect to K_s, saturated hydraulic conductivity (m/day), and has been named as the effective parameter in K_s calculation.

Variations between predicted and observed K_s are reported in the literature [2, 5, 12, 16, 18, 23, 24, 25, 26 & 27], and the results showed that when three parameter was used as input of linear equations for predicting K_s, estimated K_s better than single and tow parameter equations.

Also the Comparison between observed and predicted data obtained from the equation (7), (8), (9), (10), (11), (12), (13), (14) and (15) have been depicted (Fig. 2-10).
Fig. 5 Comparison of measured saturated hydraulic conductivity, K_s (m/day) and K_s estimated by equation (10)

Fig. 6 Comparison of measured saturated hydraulic conductivity, K_s (m/day) and K_s estimated by equation (11)

Fig. 7 Comparison of measured saturated hydraulic conductivity, K_s (m/day) and K_s estimated by equation (12)

Fig. 8 Comparison of measured saturated hydraulic conductivity, K_s (m/day) and K_s estimated by equation (13)

Fig. 9 Comparison of measured saturated hydraulic conductivity, K_s (m/day) and K_s estimated by equation (14)

Fig. 10 Comparison of measured saturated hydraulic conductivity, K_s (m/day) and K_s estimated by equation (15)
IV. CONCLUSION

In this study described equations to estimate Ks, saturated hydraulic conductivity, from d10, d30 and d60 data. The results showed approximately success in predicting hydraulic conductivity from particle diameters data. The results of regression analysis showed that d10 play a more significant role with respect to Ks, saturated hydraulic conductivity (m/day), and has been named as the effective parameter in Ks calculation. Comparison between linear and quadratic single parameter equations showed Ks saturated hydraulic conductivity predicted from linear equations, estimated rarely better than quadratic single parameter equations.

REFERENCES

