Study on Carbonation Process of Several Types of Advanced Lime-Based Plasters

Z. Pavlík, H. Benešová, P. Matiašovský, and M. Pavlíková

Abstract — In this paper, study on carbonation process of several types of advanced plasters on lime basis is presented. The movement of carbonation head was measured by colorimetric method using phenolphthalein. The rate of carbonation was accessed also by gravimetric method. Samples of studied materials were placed into the climatic chamber for simulation of environment with high concentration of CO₂. The particular samples were on all lateral sides and on the bottom side provided by epoxy resin in order to arrange 1-D transport of CO₂ into the studied samples. The carbonation rates of particular materials pointed to the time dependence of diffusion process of CO₂ for all the studied plasters. From the quantitative point of view, the carbonation of advanced modified plasters was much faster than for the reference lime plaster, what is beneficial for the practical application of the tested newly developed materials.

Keywords — Carbonation, colorimetric method, gravimetric method, lime-based plasters, pozzolana admixtures.

I. INTRODUCTION

The process of hardening of lime-based plasters is driven by the reaction of CO₂ from the ambient air with Ca(OH)₂ that represents reaction product of burnt lime (CaO) hydration. The rate of carbonation is one of the decisive factors that affect the final strength and durability properties of lime-based mortars and plasters. The lime-based mortars and plasters find application in civil engineering because of their high hygroscopicity that allows optimal conditioning of buildings’ interior. The lime materials exhibit also good adhesion to the substrates, and partial self-consolidation in the case of interior. The lime materials also have very low durability in case of their longer contact with liquid water. Here, the significant weathering of lime materials can be observed. On that account, several admixtures mainly on pozzolana basis are applied within the mix design of lime-based mortars and plasters.

Hardening of lime mortar with addition of pozzolanic admixtures proceeds in two competitive reactions: classical carbonation (reaction of calcium hydroxide and carbon dioxide) and pozzolanic reaction [1]. The process of carbonation of pure lime mortars and plasters is nowadays well understood and experimentally researched. However, application of new materials in composition of lime materials makes the process of carbonation more complex and complicated. Therefore, experimental testing and monitoring of the velocity and propagation of carbonation must be performed in order to obtain necessary information for application of newly developed materials in building practice.

In this paper, accelerated carbonation tests were performed in order to investigate carbonation process of several types of newly developed lime-based plasters. The carbonation process was monitored using the colorimetric method, whereas the gravimetric analysis was performed as well.

II. CARBONATION PROCESS

A. Carbonation of Lime Plaster

Carbonation is a reaction of slaked lime (Ca(OH)₂) with carbon dioxide (CO₂). Within this reaction, the calcite (CaCO₃) is created. This reaction runs in all of lime based materials, and is accompanied by pH decrease in the carbonated areas. This is negative phenomenon in the case of concretes due to reducing of corrosive protection of embedded steel reinforcement. On the other hand, it is fundamental process for lime plasters and mortars hardening [2].

There were discovered five phases of carbonation process [3]:
1. diffusion of CO₂ gas through the porous structure of material,
2. dissolving of Ca(OH)₂ in pore solution according to the following reaction

\[
(Ca(OH))_2 \rightarrow Ca^{2+} + 2OH^- \quad (pH>10),
\]

3. dissolving of CO₂ in pore solution

\[
CO_2 + OH^- \rightarrow HCO_3^- ,
\]

4. achievement of chemical balance of dissolved CO₂ in pore solution

\[
HCO_3^- + OH^- \rightarrow CO_3^{2-} + H_2O .
\]
5. precipitation of CaCO_3
$$\text{Ca}^2+ + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3 \cdot \left(4\right)$$

Finally, the carbonation process of lime plasters can be expressed as
$$\text{Ca(OH)}_2 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CaCO}_3 + 2\text{H}_2\text{O} \cdot \left(5\right)$$

This reaction is accompanied by the mass and volume growth of hardened particles, because portlandite (molar weight 74 g/mol and molar volume 33.0 ml/mol) is changing to calcite CaCO_3 (or laterite, and aragonite, molar weight 100g/mol and molar volume 36.9 ml/mol).

B. Carbonation of Modified Lime Plasters

Pozzolanic admixtures appeared to have positive effect on properties of lime binder in the past [4]. According to the composition of the applied pozzolana, compounds similar to Portland cement products are formed within the hydration process. Here, also the compounds of zeolite character were found, such as phillipsite 3$\text{CaO} \cdot 3\text{Al}_2\text{O}_3 \cdot 12\text{H}_2\text{O}$ and analcime $\text{Na}_2\text{O} \cdot 3\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2 \cdot 2\text{H}_2\text{O}$, in connection with microcrystalline calcite. These compounds are the cause of the plasters resistance against environmental conditions and in this way of the durability of these plasters [5].

The mineral admixtures interact chemically with the hydrating Portland cement in cement-lime plasters to form a modified paste microstructure [6]. Major component of a pozzolana, the amorphous or glassy silica, reacts with calcium hydroxide formed from calcium silicates hydration
$$\text{CH} + \text{S} + \text{H} \rightarrow \text{C} - \text{S} - \text{H} \cdot \left(6\right)$$

The composition of $\text{C} - \text{S} - \text{H}$ is not very different from that form in regular hydration, however, with very reactive pozzolanas of high silica content (metakaoline), the C/S ratio is significantly different being close to 1.0, and the H/S ratio is slightly lower, which indicates a secondary pozzolana reaction
$$\text{C}_3 + 2\text{S} + 10.5\text{H} \rightarrow 3[\text{CSH} _{3.5}] \cdot \left(7\right)$$

Small quantities of reactive alumina in a pozzolana generally substitute silica as a part of the $\text{C} - \text{S} - \text{H}$. In the case of metakaolin, which contains appreciable quantities of reactive alumina, a separate set of secondary reactions can occur, leading to the calcium aluminate hydrates formation
$$\text{CH} + \text{A} + \text{H} \rightarrow \text{C} - \text{A} - \text{H} \cdot \left(8\right)$$

The exact composition of the calcium aluminate hydrates depends on the particular pozzolana. Here, also AFm compounds, gehlenite hydrates, or monosulfoaluminate may form.

The pozzolana reaction has kinetics similar to the slow rate of hydration of C_3S, whereas the reaction heat is about -12 kJ/mol. The pozzolana addition raises the C_3S content of the cement, thereby lowers the amount of early heat evolution and reduces early strength, but not long-term strength [7]. Since pozzolana reaction has an overall increase in solid volume, the porosity of the paste will be reduced, resulting in higher strength and durability in the comparison with a plain paste of comparable reaction [8].

Plasters on the lime and cement basis combine the benefits of the both materials. Portland cement is highly reactive binder; it reacts immediately with water during hydration. Then, after several minutes the reaction is stopped for 1.5 – 2.5 hours. There is formation of ettringite with the help of gypsum on the cement grains surface. Thus water has to diffuse through the cover and reactive products like as CSH and CAH gels. Together with the hydration of clinker minerals, the portlandite supersaturation of pore solution proceeds. pH of pore solution increased up to 12.4. The rest of Ca(OH)_2 carbonates to calcite. The pores of lime-cement plaster have smaller diameter than pores of lime plaster, what causes higher diffusion resistance to CO_2 and retardation of carbonation [9].

C. Factors Affecting Carbonation

The carbonation process is affected by many factors. Firstly, it is CO_2 concentration, the higher the concentration the quicker is the reaction [10]. The temperature rise causes the increasing of CO_2 reaction rate and slower carbonation head moving [11]. Relative humidity over 95% causes the capillary condensation in the pores of material and aggravation of CO_2 permeability. On the other hand, carbonation proceeds only providing that sufficient water amount is inside the material pores. It was further discovered that CO_2 diffusion slows with increasing of filler concentration [12]. Also large calcite grains slow down the carbonation reaction [13].

III. EXPERIMENTAL INVESTIGATION

A. Materials and Samples

Within the experimental testing, new lime-metakaoline plaster developed in our laboratory was tested together with three commercially produced plasters. For the comparative reasons, the reference lime plaster was studied as well. The lime-metakaoline plaster (VOM) and the reference plaster (VO) mixtures were prepared from hydrate lime L90 produced by limekiln Mokrá, Carmeuse Czech Republic Ltd. The lime hydrate consists mainly of Ca(OH)_2 (92.2-96.6%). The rest are admixtures and impurities, nominally CO_2 (0.4-1.5%), MgO (0.4-0.8%) and SO_3 (0.1-0.3%). The applied silica aggregates mixed of three fraction 0.08/0.5; 0.5/1 and 1/2 mm in portion 1:1:1 were produced by Heidelberg Cement Group, Brňenské písky Inc., affiliate Bratčice. Metakaoline MEFISTO K05, produced by ČLUZ Inc., Nový Strašecí, was used as a pozzolana active admixture. Metakaoline is kaolinite burnt at temperatures between 500 – 850°C, i.e. above the temperature of kaolinite dehydration. It is a highly active pozzolana material with average particle size in the interval of 3 to 5 µm. Dominant parts of metakaoline MEFISTO represent SiO_2.
Plaster mixtures were prepared using laboratory mixing machine with forced rotation for 3 minutes. Each mixture was casted into two special forms, the PVC cylindrical tubes, first one with 7 cm diameter and 10 cm height, see Fig. 1. These samples were compacted using vibrating machine. The second type of form were tubes with 3 cm in diameter and 5 cm height, see Fig. 2. These samples were filled only to a half of their height and then compacted gently with hand according to Cultrone and his colleagues [8]. Then the samples were daily wetted for a three day period before they were taken out of forms and then cured for 25 days at 22±5°C and 40±10% of relative humidity.

Despite a lot of modern instrumental methods for carbonation measurement exists, the most known method for carbonation head detection is colorimetric analysis using phenolphthalein. A part of sample which stays dark pink (pH>9) contains highly alcalic portlandite. Colourless place indicates neutral calcite which is a reaction product of lime carbonation, see Fig. 3. This information often faces to a fault result that sharp border between carbonated and non carbonated part of material exists [12, 14, 15]. It was explored that head of carbonation is a large area, which width and position during carbonation changes.

Table I

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Amount of material (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO</td>
<td>4.8 Lime 14.4 Sand 4.8 Water</td>
</tr>
<tr>
<td>VOM</td>
<td>4.8 Lime 14.4 Sand 1.2 Water 5.5</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Amount of material (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>40.0 Dry mixture 7.2 Water</td>
</tr>
<tr>
<td>VOS 1</td>
<td>35.0 Dry mixture 6.3 Water</td>
</tr>
<tr>
<td>VOS 2</td>
<td>35.0 Dry mixture 7.0 Water</td>
</tr>
</tbody>
</table>

Experimental Procedure

To find out the carbonation rate of the studied materials, the particular samples were firstly insulated by the epoxy resin at the lateral sides and bottom. Thus, one-dimensional transport of CO₂ took place. Samples were then exposed to CO₂.
environment in Nuire GT2000 chamber at 30°C. High relative humidity, 70±10%, was simulated with water tank in the chamber bottom. The carbonation rate was investigated at two different CO₂ concentrations of 10% and 5% respectively, in order to speed up CO₂ diffusion into the plasters samples and accelerate carbonation reaction. Usual CO₂ concentration in cities is according to Dheilly 225-300 ppm [3]. To ensure our safety during the experiment, CO₂ concentration in the laboratory was monitored with CO₂ sensor ZG 106.

The tested samples were lengthwise cut at the specific time intervals and with the help of phenolphthalein analysis the depth of carbonation head was determined. Since we had no image how long does carbonation of modified lime plasters take, the studied samples were firstly tested after 24 hours of CO₂ exposure and the depth of carbonation head was analysed. According to the obtained results, the VO and VOM plasters samples were analysed after 16, 40, 66, 164, 652, and 816 hours, samples of VOS 1 and VOS 2 after 40, 96, and 108 hours, and finally samples of VOC after 16, 24, and 48 hours in both CO₂ concentrations.

Each tested sample was lengthwise cut immediately after it was taken out of the CO₂ chamber, whereas the dust was purified by brush. Freshly cut surface was sprinkled with 1% solution of phenolphthalein in ethanol. The determined depth of carbonation head was calculated as the average value of four measurement using micrometer.

IV. RESULTS AND DISCUSSION

The results of depth of carbonation head in dependence of time of CO₂ exposure are presented in Figs. 4, 5. From the measured data it is visible that higher CO₂ concentration caused growth of carbonation rate of about 20% for all the tested samples. The carbonation rate was nearly the same in the case of lime plaster and lime plaster modified with metakaoline addition. All factory produced plasters exhibited rapid carbonation head progress especially in case of lime-cement plaster VOC. Carbonation of all the VOC samples was completed after 72 hours, while carbonation of VO and VOM samples was not finished even at 820 hours.

The abnormal shape of carbonation head was in the case of factory produced plasters observed in comparison with VO and VOM plasters. They had a sharp straight border of phenolphthalein coloured part of samples. The other plasters had diffusion transition zone of coloured carbonation head. In the case of lime-cement plaster VOC, there were small regions, 0.5x0.5mm, which reacted with phenolphthalein. It means that their pH is higher than 9, in areas of carbonated sample. The presence of these non-carbonated particles can be caused due to very big grains of lime hydrate, which can be covered of gas impermeable layer of calcite. This layer defends to carbonation reaction inside particles. Thus phenolphthalein soaks through miscellaneous particles, reacts with basic Ca(OH)₂, and mixed calcite-portlandite grain becomes violet. The phenomenon of non reactive particles can also originate from the continuous portlandite formation during hydration reaction [16]. Moreover, hydrating allite produces three times over of portlandite than hydrating bellite in fresh cement plasters. Due to these reactions the results of carbonation process in modified plasters can be distorted.
The greatest mass change was observed for plasters on the hydrated lime basis, what was due to the high content of Ca(OH)\(_2\) in these plasters. On the other hand, these plasters reached mass maximum very slowly. The factory produced restoration system plasters VOS 1 and VOS 2 showed lower mass changes than laboratory produced lime plasters, but the carbonation reaction ran faster. The lowest Ca(OH)\(_2\) content in lime-cement plaster VOC caused the least mass increment. However, the mass maximum was obtained fastest.

V. CONCLUSION

In this paper, the carbonation process of several types of lime based plasters was studied. For the experimental assessment of carbonation rate and carbonation head movement, phenolphthalein colorimetric and gravimetric methods were used. The gravimetric measurement of carbonation process dynamics corresponded to the analysis of carbonation rate using phenolphthalein indicator. The accelerated carbonation tests used in the presented work made carbonation process possible in short time. Thus a lot of different plasters could be tested and different laboratory techniques used to monitor carbonation process. In the case of colorimetric method, it was explored that the carbonation rate of pure and modified lime plaster was nearly the same, while all the factory produced plasters exhibited rapid carbonation head progress. From the application of gravimetric method, there was observed the mass of samples growth for 4 days. After that, the mass increments were in the range of measuring error. The greatest mass change was observed for plasters on hydrated lime basis, what was due to the high content of Ca(OH)\(_2\) in these plasters. The factory produced restoration system plasters exhibited lower mass changes, but the carbonation reaction ran faster. In future work we plan perform other acceleration carbonation tests, whereas the analysis will be done except phenolphthalein and gravimetric methods also by IR spectroscopy.

ACKNOWLEDGMENT

This research has been supported partially by the Czech Ministry of Education, Youth and Sports, under projects No. MSM 6840770031.

REFERENCES