Gas Sensing Properties of SnO₂ Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method

G. Korotcenkov, B.K. Cho, L.B. Gulina, and V.P. Tolstoy

Abstract—The effect of SnO₂ surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO₂-based gas sensors to CO and H₂. At the same time, the presence of the Ag clusters on the surface of SnO₂ depressed the sensor response to ozone.

Keywords—Ag nanoparticles; deposition; characterization; gas sensors; optimization

I. INTRODUCTION

Nanoclusters of Ag are objects for intensive research in the field of catalysis, Si porosification, and design of both chemical sensors and biosensors [1]-[4]. For gas sensor applications, the most important effects of surface modification by Ag nanoclusters are the increase both sensitivity and selectivity of sensor response to specific analytes, such as H₂ and H₂S [2], [5].

For the Ag cluster synthesis and deposition, different methods such as impregnation, spray pyrolysis deposition, thermal evaporation, chemical vapor deposition, laser ablation, electroleless plating, magnetron sputtering, chemical deposition and some other have already been demonstrated [4], [6], [7]. In this report we present results related to Ag clusters synthesis by Successive Ionic Layer Deposition (SILD) method.

II. EXPERIMENTAL DETAILS

For the Ag cluster synthesis and deposition, different solutions of ascorbic acid or a 0.3 M solution of H₂O₂(OH-) reductant, and again washed in distilled water. A 0.1 M solution of silver cations reduction in weakly-alkaline solutions of hydrogen peroxide was chosen [10].

The synthesis of Ag on the substrates by SILD was carried out using the following route. During the first SILD cycle substrates used were treated in a metal salt solution (0.01M solution of Ag(NH₃)₂NO₃) and then samples were washed with distilled water to remove the non-reacted reagents, treated with reductant, and again washed in distilled water. A 0.1 M solution of ascorbic acid or a 0.3 M solution of H₂O₂(OH-) (both were supplied by Vekton) were used as reductants. The concentrations of solutions used were selected basing on the previous experience. Time of processing with the Ag solution and time of the subsequent washing with water were 30 sec each. Time of processing with the reductant solution and time of the subsequent washing with water were 1 min each. Such treatments represented the first deposition cycle.

At the following cycles of deposition at the stage of Ag⁺ adsorption solutions such as Ag(NH₃)₂NO₃ or AgNO₃ were used. The first route was similar to the one described earlier. The second route included a consistent treatment in the solutions AgNO₃, H₂O, ascorbic acid and H₂O. Parameters of the hydrogen peroxide treatment and washing were kept unchanged. For Ag deposition we have been using from 1 to 10 cycles.

The SnO₂ layers deposited by spray pyrolysis method were used for surface modification [11]. The thickness of the layers was 40-50 nm. The SnO₂ layers were nano-scaled with averaged grain sizes ranging from 15 to 25 nm [12]. The gas sensing characteristics were tested in steady state and transient modes using a flow type reactor. For mentioned above experiments measurement cycle air → testing gas → air was used. Air mixtures containing reducing gases CO or H₂ (1000 ppm), and oxidizing gas ozone (~1 ppm) were used as testing analyte. Sensor response was calculated as both the ratio R(gas)/R(air) for gas containing ozone, and the ratio R(air)/R(gas) for gas containing CO or H₂. Response and recovery times were estimated at the level of 90% (τₚ₀₉) and 50% (τₚ₅₀) of the steady state value of the film conductivity, respectively. Before gas sensing properties measurements,
sensors were annealed at 500 °C during 30 min for their stabilization

III. RESULTS AND DISCUSSIONS

A. Ag Nanocluster Characterization

Analysis of the SEM image of silver particles deposited by using the silver ammoniate and H₂O₂ solutions has shown that the averaged particle’s size is up to 1 μm and they agglomerate the 100–200 nm particles. When the silver nitrate and ascorbic acid solutions were used as reagents, the size of deposited Ag nanoparticles was 20–30 nm.

However, one should note that a detailed study of the formed layer morphology, made by using AFM microscopy (see Fig. 1), has shown that even in case of the Ag nanolayer forming with using Ag(NH₃)₂NO₃ and H₂O₂ solutions, at the surface, besides big particles, nanoclusters are being formed. They are distributed along the square uniformly, and in the dependence of technological route have sizes ranged from 1-5 nm to 50–100 nm. The size of those clusters increases with the increasing of the deposition cycles number.

The results of more detailed characterization of Ag nanoclusters, synthesized by SILD method on the surface of Si substrates and discussions of their growth mechanism one can find in [13].

B. Gas sensing characteristics

The results of the influence of surface modifications by Ag on the gas sensing characteristics of the SnO₂-based gas sensors are shown in Figs. 2 and 3. It is seen that Ag deposition on the SnO₂ surface promotes the increase of sensor response to reducing gases by more than 5- 10 times. This demonstrates that this method of surface modification based on the SILD technology can be used for improvement of the SnO₂-based gas sensor’s parameters. At that, an optimizing effect of the surface modification by Ag clusters is observed in a broad range of surface coverage. For Pd doping we observed strong maximum at certain surface concentration of Pd nanoclusters [14].

It is important that maximum responses of the SnO₂-based gas sensors to H₂ and CO were achieved at different Ag coverage. For CO detection, the maximum sensor response was observed after four cycles of Ag deposition (Fig. 3), while for H₂ detection even after 8 deposition cycles we observed the increase of sensor response (Fig. 2). This means that Ag clusters with the same size have different activity with different gases. The last one is normal for heterogeneous catalysts.

The surface modification by Ag also promotes the decrease of response time (see Fig. 4). However, this effect takes place only for sensors fabricated using small number of Ag deposition cycles. Unfortunately, the nature of this effect is strange and better understanding of this effect requires additional study.

The influence of the surface modification by Ag on sensor’s response to ozone (see Fig. 2) is another interesting effect observed after surface modification by Ag. The presence of Ag additives on the SnO₂ surface sharply suppresses the sensor response to ozone. As one can see from Fig. 2, already after two deposition cycles the response to ozone decreases by more
than 100 times. This effect allows improving selectivity of the sensors of reducing gases, working in real conditions, when the appearance of ozone in atmosphere is possible. In this case Ag nano-layers act as a catalytically active filter for ozone. However, the nature of this effect is not understandable completely, because after 1-5 deposition cycles Ag does not form continuous layer.

C. Discussions

At present for explanation of gas sensitive properties of the SnO₂-based sensors modified by Ag it is usually being used electronic model suggested in refs. [3], [15]. This model is based on the change of the Ag oxidation state at the SnO₂ surface during interaction with gas detected, which is accompanied by the change of potential barrier at the Ag-SnO₂ interface.

![Fig. 4 Influence of the surface modification by Ag nanoclusters on response time of the SnO₂-based sensors: T_{oper}=180 °C; 1-τ₀/₉ and 2-τ₀/₅.](image)

Fig. 4 Influence of the surface modification by Ag nanoclusters on response time of the SnO₂-based sensors: T_{oper}=275 °C; 1-τ₀₉ and 2-τ₀₅.

![Fig. 5 Influence of SnO₂ surface modification on temperature dependencies of gas response to H₂.](image)

Fig. 5 Influence of SnO₂ surface modification on temperature dependencies of gas response to H₂.

We agree with such approach, because our data obtained are in the frame of present model. In particularly, the temperature range of sensitization (see Fig. 5) coincides with the temperature range, where the change of chemical composition of Ag clusters is possible [16]-[18].

The influence of operating temperature on the SnO₂ resistivity dependence from the number of deposition cycles can also be considered as a confirmation of mentioned above model. The increase of resistivity of SnO₂ films modified by Ag is also being observed just in indicated earlier temperature range (T_{oper}<400 °C). Observed behavior of the film resistance is in accordance with conclusion made by Matsushima et al. [36] that redox couple Ag⁺/Ag⁰ acts as a surface acceptor. At temperatures exceeding 400 °C the growth of SnO₂ resistivity is insignificant, or is absent (see Fig. 6, curve 3). All above mentioned testifies that the presence of Ag in oxide state really is required condition for the appearance of the optimizing effect in the SnO₂ sensors with Ag modified surface during detection of reducing gases.

![Fig. 6 Influence of surface modification by Ag nanoclusters on response and response time of SnO₂-based sensors: 1-T_{oper}=225 °C; 2-275 °C; 3-425 °C.](image)

Fig. 6 Influence of surface modification by Ag nanoclusters on response and response time of SnO₂-based sensors: 1-T_{oper}=225 °C; 2-275 °C; 3-425 °C.

The presence of Ag₂O could also be the main reason of the increased activity of the Ag clusters to ozone. Research made in [19], [20] has shown that Ag₂O is effective heterogeneous catalyst for the decomposition of ozone. Just this fact can explain the decrease of sensitivity to ozone of SnO₂ sensors modified by Ag. Decomposition of ozone at Ag₂O nanoclusters can take place without electronic exchange with SnO₂, necessary for the sensor response appearance.

IV. CONCLUSIONS

Conducted research has shown that the SILD technology is acceptable for the controllable forming of the Ag nanoparticles at the surface of different substrates including SnO₂ films deposited by spray pyrolysis. The size of the Ag nanoparticles deposited can be controlled by varying composition of solutions used and the number of the SILD cycles. As it was established, the size of the Ag nanoclusters depending on a synthesis conditions may vary from 1-5 nm to 500 nm. It was shown that surface modification of the SnO₂ films by the Ag nanoparticles deposited by SILD technology is also an effective method for the sensor parameters optimization. Modification by Ag promotes both the increase of sensor response of the SnO₂-based gas sensors to reducing gases, and the decrease of sensitivity to oxidizing gases (ozone). It testifies that the SnO₂:Ag sensors will be more selective to...
reducing gases in comparison with sensors designed on the base of unmodified material. The last one is important for CO or H₂ sensors working in real environment containing ozone. SnO₂ modification by Ag nanoclusters is also being accompanied by the decrease of the response time.

ACKNOWLEDGMENTS

G. Korotcenkov and B. K. Cho are thankful to Korean BK21 Program funded by the Ministry of Science and Technology of Korean Government, and by the Korean Science and Engineering Foundation (KOSEF). The authors are also thankful to Dr. V. Brinzari from the Technical University of Moldova for their help in the structural and surface characterization of the studied films.

REFERENCES


Ghenadi Korotcenkov received his PhD in physics and technology of semiconductor materials and devices from Technical University of Moldova in 1976 and his Habilitation degree in physics and mathematics from Academy of Science of Moldova in 1990. Long time he was a leader of gas sensor group and manager of various national and international scientific and engineering projects carried out in the Laboratory of Micro- and Optoelectronics, Technical University of Moldova. Currently Dr. Sci. G. Korotcenkov is a research professor in Department of Materials Science and Engineering at Gwangju Institute of Science and Technology (GIST) in Korea. His present scientific interests include material sciences, focusing on metal oxide film deposition and characterization, surface science, and thin film gas sensor design.

Beongki Cho received his PhD in Physics and Astronomy from Iowa State University, U.S.A. in 1995. He was worked in the field of the interplay between superconductivity and magnetism during his PhD program. He extended his research interest to strongly correlated electron system, including heavy fermion, Kondo behavior, and related materials, which shows exotic physical properties. He is now a professor in Materials Science and Engineering Department and Department of Nanobio Materials and Electronics at Gwangju Institute of Science and Technology (GIST) in Korea. In addition to his research majors, his current research projects are focused on sensors design, including development of bio-sensor using GMR and TMR junction in nano-size, and metal oxide gas sensors.

Larisa B. Gulina is a senior researcher at the University of St-Petersburg. She received a MS degree in chemistry in 1995 from the State University of St-Petersburg, Russia and a PhD in solid state chemistry in 1999 from the same University. Her current research interests are in layer-by-layer synthesis of inorganic nanostructures and electron microscopy.

Valeri P. Tolstoy is an associate professor at the State University of St-Petersburg. He received his MS degree in chemical engineering from the St-Petersburg Institute of Technology in 1974, and a PhD in chemistry from the same Institute in 1980. Dr. Sci. degree in chemistry from St-Petersburg State University, Russia was received in 2009. His research interests include chemistry of nanostructures and their optical properties.