Abstract—In this paper, we investigate two parallel alternating methods for solving the system of linear equations $Ax = b$ and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results.

Keywords—nonsingular H-matrix, parallel alternating method, convergence.

I. INTRODUCTION

For the large system of linear equations

$$Ax = b,$$

where A is a nonsingular square matrix of order n, $x, b \in \mathbb{R}^n$. Benzi and Szyld [1] analyzed the following alternating method:

Given an initial vector $x^{(0)}$, for $k = 0, 1, 2, \cdots$,

$$x^{(k+\frac{1}{2})} = M^{-1}N_x^{(k)} + M^{-1}b,$$

$$x^{(k+1)} = P^{-1}Qx^{(k+\frac{1}{2})} + P^{-1}b,$$

where $A = M - N = P - Q$ are two splittings of A. They proved its convergence under certain conditions when the coefficient matrix A is a monotone matrix or a symmetric positive definite matrix.

In paper [2], Climent and Perea introduced two parallel alternating iterative methods.

Assume that

$$A = M_I - N_I = P_I - Q_I, \quad l = 1, 2, \cdots, p,$$

where M_I and P_I nonsingular matrices; E_l satisfy $\sum_{l=1}^{p} E_l = I$ (I is an identity matrix), where E_l are diagonal and $E_l \geq 0$.

Method 1: Let $x^{(0)}$ be a starting vector, $\varepsilon > 0$ is a given precision. For $k = 1, 2, \cdots$,

$$x^{(k+\frac{1}{2})}_l = (M_I^{-1}N_I)^{\nu(k,l)}x^{(k)} + \sum_{i=0}^{\nu(k,l)-1} (M_I^{-1}N_I)^iM_I^{-1}b,$$

$$x^{(k+1)}_l = (P_I^{-1}Q_I)^{\nu(k,l)}x^{(k+\frac{1}{2})}_l + \sum_{i=0}^{\nu(k,l)-1} (P_I^{-1}Q_I)^iP_I^{-1}b,$$

$$x^{(k+1)} = \sum_{l=1}^{p} E_lx^{(k+1)}_l.$$

If $\|x^{(k+1)} - x^{(k)}\| < \varepsilon$, then quit.

It is easy to notice that the iterative matrix of Method 1 is

$$T = \sum_{l=1}^{p} E_l(M_I^{-1}N_I)^{\nu(k,l)}(M_I^{-1}N_I)^{\mu(k,l)}.$$

Method 2: Let $x^{(0)}$ be a starting vector, $\varepsilon > 0$ is a given precision. For $k = 1, 2, \cdots$,

$$x^{(k+\frac{1}{2})}_l = \sum_{l=1}^{p} E_l(M_I^{-1}N_I)^{\nu(k,l)}x^{(k)} + \frac{\nu(k,l)-1}{\mu(k,l)-1} \sum_{i=0}^{\nu(k,l)-1} (M_I^{-1}N_I)^iM_I^{-1}b,$$

$$x^{(k+1)}_l = \sum_{l=1}^{p} \frac{\nu(k,l)-1}{\mu(k,l)-1} (P_I^{-1}Q_I)^{\nu(k,l)}x^{(k+\frac{1}{2})}_l + \sum_{i=0}^{\nu(k,l)-1} (P_I^{-1}Q_I)^iP_I^{-1}b.$$

If $\|x^{(k+1)} - x^{(k)}\| < \varepsilon$, then quit.

It is easy to notice that the iterative matrix of Method 2 is

$$S = \sum_{l=1}^{p} F_l(M_I^{-1}N_I)^{\nu(k,l)}(M_I^{-1}N_I)^{\mu(k,l)}.$$

In this paper, we give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix.

II. PRELIMINARIES

Let $A \in \mathbb{R}^{n \times n}$. We denote by $A \geq 0$ a nonnegative matrix, $|A|$ the absolute value of matrix A, and $\rho(A)$ the spectral radius of A.

Definition 2.1 Let $A = B - C$ be a splitting of A. If $B^{\varepsilon} \geq 0, B^{\varepsilon}C \geq 0, C^{\varepsilon} \geq 0$, then $A = B - C$ is a weak regular splitting[3]. If $B^{\varepsilon} \geq 0, C^{\varepsilon} \geq 0$, then $A = B - C$ is a regular splitting[4]. If B is an M-matrix and $C \geq 0$, then $A = B - C$ is an M-splitting[5].

In paper [2], a weak regular splitting is also called a weak nonnegative splitting of the first type.

It’s obvious that an M-splitting is a regular splitting and a regular splitting is a weak regular splitting.

Definition 2.2[6] Let $A \in \mathbb{R}^{n \times n}$. $A = M - N(M, N \in \mathbb{R}^{n \times n})$ is called an H-splitting if $M > -|N|$ is an M-matrix. If $M > -|N|$, then $A = M - N$ is called an H-compatible splitting.

III. CONVERGENCE THEOREMS

In this section, we give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix.

Some results on parallel alternating methods

Guangbin Wang*, Fuping Tan

Guangbin Wang is with the Department of Mathematics, Qingdao University of Science and Technology, Qingdao, 266061, China.
Fuping Tan is with the Department of Mathematics, Shanghai University, Shanghai, 200444, China.

* Corresponding author. E-mail: wguangbin730828@sina.com. This work was supported by Natural Science Fund of Shandong Province of China (Y2008A13).
Lemma 3.1[2] Let $A \in R^{n \times n}$ and $A^{-1} \geq 0$. If $A = M_l - N_l = P_l - Q_l \ (l = 1, 2, \cdots, p)$ are all weak nonnegative splittings of the first type, then

$$\rho(T) < 1,$$

where

$$T = \sum_{l=1}^{p} E_l(P_l^{-1}Q_l)^{(k,l)}(M_l^{-1}N_l)^{\mu(k,l)}.$$

Lemma 3.2[2] Let $A \in R^{n \times n}$ and $A^{-1} \geq 0$. If $A = M_l - N_l = P_l - Q_l \ (l = 1, 2, \cdots, p)$ are all weak nonnegative splittings of the first type, then

$$\rho(S) < 1,$$

where

$$S = \sum_{l=1}^{p} E_l(P_l^{-1}Q_l)^{(k,l)}\sum_{l=1}^{p} E_l(M_l^{-1}N_l)^{\mu(k,l)}.$$

Lemma 3.3[3] If $A \in R^{n \times n}$ is a nonsingular H-matrix, then $|A^{-1}| \leq A > -1$.

Theorem 3.1 Let $A \in R^{n \times n}$ be a nonsingular H-matrix, $A = M_l - N_l = P_l - Q_l \ (l = 1, 2, \cdots, p)$ are H-splittings while $B \in R^{n \times n}$ be a nonsingular M-matrix, $B = (\langle B_{ij} \rangle)_{1 \leq i, j \leq n}$ are M-splittings of B. Thus we obtain

$$|T| \geq \sum_{l=1}^{p} E_l(P_l^{-1}Q_l)^{(k,l)}(M_l^{-1}N_l)^{\mu(k,l)}$$

$$\sum_{l=1}^{p} E_l(P_l^{-1}Q_l)^{(k,l)}(M_l^{-1}N_l)^{\mu(k,l)} = T.$$
It's easy to test that
\[
\begin{bmatrix}
10 & -3 & -8 \\
-6 & 10 & 0 \\
-7 & -7 & 12
\end{bmatrix}
\]
is a nonsingular M-matrix, but
\[
\begin{bmatrix}
10 & -3 & -8 \\
-6 & 10 & 0 \\
-7 & -7 & 12
\end{bmatrix}
\neq A,
\]
so
\[
A = M_l - N_l = P_l - Q_l \quad (l = 1, 2)
\]
are H-splittings.

Case 1: We choose
\[
E_1 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\quad
E_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix},
\]
then
\[
T = \begin{bmatrix}
48 & -89 & 237 \\
31 & 12518 & 40 & 9861 \\
-52 & 212 & 150 & 949
\end{bmatrix}
\]
\[
\rho(T) = \frac{103}{3963} < 1.
\]

Case 2: We choose
\[
E_1 = I/3, \quad E_2 = 2I/3, \quad F_1 = 3I/4, \quad F_2 = I/4, \quad l = 1, 2,
\]
then
\[
S = \begin{bmatrix}
191 & 119 & 231 \\
-64 & 19 & 25 \\
-30 & 75 & 133
\end{bmatrix}
\]
\[
\rho(S) = \frac{163}{6917} < 1.
\]

REFERENCES