The diameter of an interval graph is twice of its radius

Tarasankar Pramanik, Sukumar Mondal and Madhumangal Pal

Abstract—In an interval graph \(G = (V, E) \) the distance between two vertices \(u, v \) is defined as the smallest number of edges in a path joining \(u \) and \(v \). The eccentricity of a vertex \(v \) is the maximum among distances from all other vertices of \(V \). The diameter (\(\delta \)) and radius (\(\rho \)) of the graph \(G \) is respectively the maximum and minimum among all the eccentricities of \(G \). The center of the graph \(G \) is the set \(C(G) \) of vertices with eccentricity \(\rho \). In this context our aim is to establish the relation \(\rho = \left\lfloor \frac{\delta}{2} \right\rfloor \) for an interval graph and to determine the center of it.

Keywords—Interval graph, interval tree, radius, center.

I. INTRODUCTION

An undirected graph \(G = (V, E) \) is an interval graph if the vertex set \(V \) can be put into one-to-one correspondence with a set of intervals \(I \) on the real line \(R \) such that two vertices are adjacent in \(G \) if and only if their corresponding intervals have non-empty intersection. The set \(I \) is called an interval representation of \(G \) and \(G \) is referred to as the intersection graph of \(I \) [5]. Let \(I = \{i_1, i_2, \ldots, i_n\} \), where \(i_c = [a_c, b_c] \) for \(1 \leq c \leq n \), be the interval representation of the graph \(G \), \(a_c \) is the left endpoint and \(b_c \) is the right end point of the interval \(i_c \). Without any loss of generality assumed the following:

(a) an interval contains both its endpoints and that no two intervals share a common endpoint [5],
(b) intervals and vertices of an interval graph are one and the same thing,
(c) the graph \(G \) is connected, and the list of sorted endpoints is given and
(d) the intervals in \(I \) are indexed by increasing right endpoints, that is, \(b_1 < b_2 < \cdots < b_n \).

Fig. 1. An interval graph \(G = (V, E) \)

An interval graph and its interval representation are shown in Figure 1 and Figure 2 respectively.

Interval graphs arise in the process of modeling real life situations, specially involving time dependencies or other restrictions that are linear in nature. This graph and various subclass thereof arise in diverse areas such as archeology, molecular biology, sociology, genetics, traffic planning, VLSI design, circuit routing, psychology, scheduling, transportation and others. Recently, interval graphs have found applications in protein sequencing [7], macro substitution [2], circuit routine [8], file organization [1], job scheduling [1], routing of two points nets [6] and many others. An extensive discussion of interval graphs also appears in [5]. Thus interval graphs have been studied intensely from both the theoretical and algorithmic point of view.

The notion of a center in a graph is motivated by a large class of problems collectively referred to as the facility-location problems where one is interested in identifying a subset of the vertices of the graph at which certain facilities are to be located in such a way that for every vertex in the graph, the distance to the nearest facility is minimum.

For a connected graph \(G = (V, E) \), the distance \(d(u, v) \) between vertices \(u \) and \(v \) is the smallest number of edges in a path joining \(u \) and \(v \).

The eccentricity of a vertex \(v \in V \), is denoted by \(e(v) \) and is defined by

\[e(v) = \max\{d(u, v) : u \in V\}. \]

The diameter \(\delta(G) \) (or simply \(\delta \)), radius \(\rho(G) \) (or simply \(\rho \)) and the center \(C(G) \) of a graph \(G \) are defined as follows:

\[\delta(G) = \max\{e(v) : v \in V\}, \]
\[\rho(G) = \min\{e(v) : v \in V\}, \]
and \(C(G) = \{v \in V : e(v) = \rho(G)\} \).

The center of a graph may be a single vertex or more than one vertex. This shows in the following figure. The graph in Figure 3(a) has only one center with center node 2 while the graph in Figure 3(b) has two centers and the center nodes are 3 and 4.

A. Survey of related works

It is both well-known and easy to observe that the center of an arbitrary graph \(G = (V, E) \) can be computed by the
following brute force approach: perform breadth-first search of
Fig. 3. (a) The center with one vertex; (b) The center with two vertices.

For some particular classes of graphs, such as for trees
[4], outerplaner graphs [3] etc., linear time algorithms can be
devised to compute the center. For the interval graph with
vertices and
are two end points of the vertices

The following lemma is true for a given interval graph, \(G = (V, E) \).

Lemma 1 ([15]): If the vertices \(u, v, w \in V \) be such that
\(u < v < w \) in the IG-ordering and \(u \) is adjacent to \(w \) then \(v \) is also adjacent to \(w \).

For each vertex \(v \in V \) let \(H(v) \) represent the highest
numbered adjacent vertices of \(v \). If no adjacent vertex of \(v \) exists with higher IG number than \(v \) then \(H(v) \) is assumed to be \(v \).

In other words, \(H(v) = \max \{ u : (v, u) \in E, u \geq v \} \).

For a given interval graph \(G \), let a tree \(T(G) = (V, E') \) be
defined such that \(E' = \{ (u, H(u)) : u \in V, u \neq n \}, n \) be
the root of \(T(G) \). This tree is called the interval tree \(IT \). The
various properties of interval tree are available in [11], [12],
[14]. The most important property is as follows:

Lemma 2 ([13]): For a connected interval graph there exists
a unique interval tree \(T(G) \).

For each vertex \(v \) of interval tree, define level\((v)\) to be the
distance of \(v \) from the vertex \(n \) in the tree.

Let \(N_l \) be the set of vertices which are at a distance \(l \) from
the vertex \(n \). Thus \(N_l = \{ u : d(u, n) = l \} \) where \(d(u, n) \)

is the distance between \(u \) and \(n \) in the interval tree and \(N_0 \) is
the singleton set \(\{ n \} \). If \(u \in N_l \) then \(d(u, n) = l \) and the vertex \(u \)
is at level \(l \) of the interval tree. Thus, the vertices at level \(l \)
of the interval tree are the vertices of \(N_l \). It follows from Lemma 1,
that the vertices of \(N_l \) are consecutive integers. Hence the
path starting from the vertex 1 and ending at the vertex \(n \) in
\(T(G) \) is called the main path. The main path is represented
by dotted lines in Figure 4.

Define the height \(h \) of the tree \(T(G) \) by

\[h = \max \{ \text{level}(v) : v \in V \}. \]

The distance between any two vertices of \(G \) can be
determined from the following result.

Lemma 3 ([14]): Given \(u, v \in V, v \neq n \), let \(w \) be the vertex
at level\((v) + 1 \) on the path from \(u \) to \(n \) and \(w' = H(w) \). If
level\((u) > \text{level}(v)\), then
\[
d(u, v) = \begin{cases}
\text{level}(u) - \text{level}(v), & \text{if } (w, v) \in E \\
\text{level}(u) - \text{level}(v) + 1, & \text{if } (w, v) \notin E \text{ and } (w', v) \in E \\
\text{level}(u) - \text{level}(v) + 2, & \text{otherwise.}
\end{cases}
\]

The vertex at level \(l \) on main path is denoted by \(v_l \). \(l \)
represents the level number and \(* \) means it is on the main path.
III. DIAMETER

In this section the relation between radius and diameter for the Interval Graph \(G = (V, E) \) has been established. In this regard we recall lemmas 4 to 5.1 was stated in [14].

Lemma 4 ([14]): Let \(v_1^* \in N_1 \) be the vertex on the main path. If all \(v_1 \in N_1 \) are adjacent to \(v_1^* \) in \(G \) then \(\delta(G) = h \) otherwise \(\delta(G) = h + 1 \).

If the diameter of the graph \(G \) is \(h + 1 \), \(h > 1 \) then consider one more set of vertices \(N_{-1} \) defined by

\[
N_{-1} = \{ u \in N_1, (u, v_1^*) \notin E, \text{ where } v_1^* \in N_1 \}
\]

It is clear that for a vertex \(u \in N_{-1} \) if \(v_1^* \in N_1 \) is the vertex on the main path then the distance between \(v_1^* \) and \(u \) is 2, since there exists only one path from \(v_1^* \) to \(u \) that passes through the vertex \(u \in N_0 \).

Let \(v_l \) be any vertex at level \(l \) and \(v_{l+1}^* \) be the vertex at level \(l + 1 \) on the main path. We recall two parameters \(d_1 \) and \(d_{-1} \) from [14]. They are defined as

\[
d_1 = \begin{cases}
 h - l, & \text{if } (v_l, v_{l+1}^*) \in E \\
 h - l + 1, & \text{if } (v_l, v_{l+1}^*) \notin E, \ (v_l, v_l^*) \in E \\
 h - l + 2, & \text{otherwise}
\end{cases}
\]

and

\[
d_{-1} = \begin{cases}
 l + 1, & \text{if } (v_l, v_2) \notin E \text{ and } (v_l^*, v_1) \notin E \text{ for all } v_l \in N_1, v_2 \in N_2 \text{ on the path from } v_l \text{ to } u \\
 l, & \text{if } N_{-1} \neq \Phi
\end{cases}
\]

Lemma 5 ([14]): Let \(v_l \) be a vertex at level \(l \) and \(v_l^* \) be the vertex at the same level on the main path. The maximum distance \(d_{\text{max}}(v_l) \) is given by

\[
d_{\text{max}}(v_l) = \max\{d(u, v_l) : u \in V\} = \max(d_1, d_{-1}).
\]

The center of the graph \(G \) is denoted by \(C(G) \). An explicit form to compare center of \(G \) is given below.

Corollary 5.1 ([14]): If \(d_{\text{max}}(v_l) = \rho \) then \(v_l \in C(G) \).

Now let us partition the vertices at level \(l \) of the interval tree \(T(G) \) into three disjoint subsets \(N_l^{(1)}, N_l^{(2)} \) and \(N_l^{(3)} \) as the following way:

\[
N_l^{(1)} = \{ v_l : (v_l, v_{l+1}^*) \in E \}
\]

\[
N_l^{(2)} = \{ v_l : (v_l, v_{l+1}^*) \notin E, (v_l, v_l^*) \in E \}
\]

\[
N_l^{(3)} = \{ v_l : (v_l, v_{l+1}^*) \notin E, (v_l, v_l^*) \notin E \}
\]

Then,

\[
d_1 = \begin{cases}
 h - l, & \text{if } v_1 \in N_l^{(1)} \\
 h - l + 1, & \text{if } v_1 \in N_l^{(2)} \\
 h - l + 2, & \text{if } v_1 \in N_l^{(3)}
\end{cases}
\]

Therefore the eccentricity of the vertex, radius, diameter and center of the graph can be given by the following manner:

\[
e(v_l) = \max\{d(u, v_l) : u \in V\}
\]

\[
d_{\text{max}}(v_l) = \max(d_1, d_{-1}),
\]

\[
\rho(G) = \min\{e(v) : v \in V\},
\]

\[
\delta(G) = \max\{e(v) : v \in V\}
\]

\[
\begin{cases}
 h, & \text{if } N_{-1} = \Phi \\
 h + 1, & \text{if } N_{-1} \neq \Phi
\end{cases}
\]

\[
C(G) = \{ v : e(v) = \rho, v \in V \}
\]

\[
= \{ v_l : d_{\text{max}}(v_l) = \rho \}.
\]

Fig. 6. An arbitrary graph \(G_A = (V_A, E_A) \) in which \(\rho \neq \lceil \frac{\delta}{2} \rceil \)

<table>
<thead>
<tr>
<th>Table I</th>
<th>Distances between vertices for the graph of Figure 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_A)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table II</th>
<th>Eccentricities of the vertices for the graph of Figure 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e(v_A))</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Next we investigate the relation between radius and diameter of an interval graph. In general, the relation \(\rho = \lceil \frac{\delta}{2} \rceil \) is not valid for an arbitrary graph. We argue this statement by considering a counter example. For this purpose we consider the graph shown in Figure 6. Then we compute the shortest distances and eccentricities and put them in the following two tables Table I and Table II respectively for all the vertices of graph of Figure 6.

From these two tables it is easily seen that \(\delta(G_A) = \max\{e(v_A) : v_A \in V_A\} = 2 \) and \(\rho(G_A) = \min\{e(v_A) : v_A \in V_A\} = 2 \), and then \(\rho(G_A) \neq \frac{\delta(G_A)}{2} \).

Lemma 6: For a given interval graph \(G \), \(\rho = \lceil \frac{\delta}{2} \rceil \) and the center \(C(G) \) of the graph \(G \) is given by
Thus, in this case \(\rho = \left\lfloor \frac{2}{3} \right\rfloor \) where,

\[
C(G) = \begin{cases}
\{ v : v \in N_i^{(1)} \}, & \text{for } l = \left\lfloor \frac{h-1}{2} \right\rfloor \text{ or } \left\lfloor \frac{h-1}{2} \right\rfloor \\
\{ v : v \in N_i^{(1)} \cup N_i^{(2)} \}, & \text{for } l = \left\lfloor \frac{h}{2} \right\rfloor \text{ or } \left\lfloor \frac{h}{2} \right\rfloor
\end{cases}
\]

and \(h \) is odd.

Hence whatever the case may be, \(\rho = \left\lfloor \frac{2}{3} \right\rfloor \) and center of the graph be

\[
C(G) = \begin{cases}
\{ v : v \in N_i^{(1)} \}, & \text{for } l = \left\lfloor \frac{h-1}{2} \right\rfloor \text{ or } \left\lfloor \frac{h-1}{2} \right\rfloor \\
\{ v : v \in N_i^{(1)} \cup N_i^{(2)} \}, & \text{for } l = \left\lfloor \frac{h}{2} \right\rfloor \text{ or } \left\lfloor \frac{h}{2} \right\rfloor
\end{cases}
\]

if \(h \) is odd and \(N_{-1} \neq \Phi \)

\[
C(G) = \begin{cases}
\{ v : v \in N_i^{(1)} \}, & \text{for } l = \left\lfloor \frac{h}{2} \right\rfloor \text{ or } \left\lfloor \frac{h}{2} \right\rfloor \\
\{ v : v \in N_i^{(1)} \cup N_i^{(2)} \}, & \text{for } l = \left\lfloor \frac{h}{2} \right\rfloor \text{ or } \left\lfloor \frac{h}{2} \right\rfloor
\end{cases}
\]

if \(h \) is even and \(N_{-1} \neq \Phi \)

Thus, in this case \(\rho = \left\lfloor \frac{2}{3} \right\rfloor \) where,

\[
C(G) = \begin{cases}
\{ v : v \in N_i^{(1)} \}, & \text{for } l = \left\lfloor \frac{h-1}{2} \right\rfloor \text{ or } \left\lfloor \frac{h-1}{2} \right\rfloor \\
\{ v : v \in N_i^{(1)} \cup N_i^{(2)} \}, & \text{for } l = \left\lfloor \frac{h}{2} \right\rfloor \text{ or } \left\lfloor \frac{h}{2} \right\rfloor
\end{cases}
\]

and \(h \) is odd.

Hence whatever the case may be, \(\rho = \left\lfloor \frac{2}{3} \right\rfloor \) and center of the graph be

\[
C(G) = \begin{cases}
\{ v : v \in N_i^{(1)} \}, & \text{for } l = \left\lfloor \frac{h-1}{2} \right\rfloor \text{ or } \left\lfloor \frac{h-1}{2} \right\rfloor \\
\{ v : v \in N_i^{(1)} \cup N_i^{(2)} \}, & \text{for } l = \left\lfloor \frac{h}{2} \right\rfloor \text{ or } \left\lfloor \frac{h}{2} \right\rfloor
\end{cases}
\]
Then we have two cases:

Case 1: The case when \(N_{-1} \neq \Phi \), then \(\delta = h + 1 \). Therefore,

\[
C(G) = \left\{ v : v \in N_{-1}^{(1)} \cup N_{r+1}^{(2)} \right\}, \quad \text{if } \delta \text{ is odd}
\]

\[
C(G) = \left\{ v : v \in N_{-1}^{(1)} \right\}, \quad \text{if } \delta \text{ is even}
\]

where, \(r = \left\lceil \frac{h}{2} \right\rceil - 1, \quad \text{if } N_{-1} = \Phi \).

Proof. The center of the graph \(G \) obtained by lemma 6 is

\[
C(G) = \left\{ v : v \in N_{-1}^{(1)} \right\}, \quad \text{if } h \text{ is odd and } N_{-1} \neq \Phi
\]

\[
C(G) = \left\{ v : v \in N_{-1}^{(1)} \cup N_{r+1}^{(2)} \right\}, \quad \text{if } h \text{ is even and } N_{-1} \neq \Phi
\]

\[
C(G) = \left\{ v : v \in N_{-1}^{(1)} \cup N_{r+1}^{(2)} \cup N_{r}^{(1)} \right\}, \quad \text{if } h \text{ is odd and } N_{-1} = \Phi
\]

Let \(r = \left\lceil \frac{h}{2} \right\rceil - 1, \quad \text{if } N_{-1} = \Phi \).

Then we have two cases:

Case 2: The case when \(N_{-1} = \Phi \), then \(\delta = h \). Therefore,

\[
C(G) = \left\{ v : v \in N_{r}^{(1)} \cup N_{r+1}^{(2)} \right\}, \quad \text{if } \delta \text{ is even}
\]

\[
C(G) = \left\{ v : v \in N_{r}^{(1)} \right\}, \quad \text{if } \delta \text{ is odd}
\]

Now it is clear that when \(h \) is odd, \(\delta \) is odd. Then,

\[
l = \left\lceil \frac{h}{2} \right\rceil + 1 = \left\lceil \frac{h}{2} \right\rceil + 1
\]

Therefore, \(v \in N_{r+1}^{(2)} \), if \(\delta \) is odd. Hence,

\[
C(G) = \left\{ v : v \in N_{r+1}^{(2)} \right\}, \quad \text{if } \delta \text{ is odd}
\]

IV. CONCLUSION

In this paper some properties of an interval graph are introduced. We have worked to prove a relation \(\rho = \left\lceil \frac{h}{2} \right\rceil \). Also, the center of an interval graph has been calculated without use of \(\rho \). We think it will enrich all most all researchers.

REFERENCES

