Abstract—This paper describes an efficient hardware implementation of a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique, based on the use of software/hardware system and a reduced physical address, enlarges the interfacing capacity of the microprocessor-based systems, uses the Direct Memory Access (DMA) to increase the frequency of the new bus, and improves the speed of data exchange. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus. A Xilinx Integrated Software Environment (ISE) 7.1i has been used for the programmable logic implementation.

Keywords—Interfacing, Software/hardware System, CPLD, programmable logic, DMA.

I. INTRODUCTION

The inputs and the outputs are generally handled in the form of bytes, words, or double words for the majority of processors. The physical communication between an auxiliary circuit and an external card is ensured by enabling the address decoder as soon as the address of this latter card is available on the system bus. This mechanism explains why the installation of expansion cards causes sometimes conflict problems: it happens that two cards assert the same field of addressing or overlapping fields [1].

The Fast Physical Addressing is an interfacing system which is aimed to reduce the use of physical addresses in microprocessor-based systems. Furthermore, it will improve the data exchange speed compared to the Extended Physical Addressing technique [2]. The proposed system combines a software/hardware solution to obtain the above advantages. This solution consists in creating a new bus, made up of a data bus, an address bus and a control bus. The suggested architecture is composed of a hardware part and a software part. The first is made up of a new bus and an interface between the system bus and the new bus. The software part ensures the communication between the microprocessor-based system and our interface. In this technique we use the Direct Memory Access (DMA) to increase the data exchange speed between the microprocessor-based system and our system.

II. EXTENDED PHYSICAL ADDRESSING

The Extended Physical Addressing is based on a mixed software/hardware architecture, which is intended to increase the addressing capacity of the computer and the microprocessor-based system [2]. In this system, we have used some addresses of the microprocessor-based system addressing area to address a larger external memory capacity. The material part of this system is made up of the new bus and the interface, which is between the system bus and the device that will be addressed by this technique. The input of this interface will be connected to the microprocessor-based system bus, and the output which is a new bus will be connected to an external device. The new bus contains a data bus and an address bus. Fig. 1 illustrates the basic idea of the hardware part.

The mechanism of this technique can be described in two steps. First, the software ensures the availability of the data intended to be present on the new bus as addresses. The decoder enables the D "LATCH" circuit to record these data and disables the two data bus buffers until they reach the second step. The address and data lines of the new bus will be at the high impedance state. Second, the software ensures the availability of the data.
The address decoder enables the two bus buffers. The data values on the new bus are identical to the system data bus at this level. The addresses values are identical to the first step data of the system bus.

III. EXTENDED PHYSICAL ADDRESSING IMPLEMENTATION

In order to test the Extended Physical Addressing system, CPLD implementation is performed using Xilinx Integrated Software Environment (ISE) 7.1i. The Engineering Capture System (ECS) is exploited to create the schematic [3]. An XC9572-10PC84 device is used [4].

A model of schematic implementation is presented in Fig. 2 and the VHDL instantiation template is presented in Fig. 3. BUFE8 is an internal 3-State Buffer with Active High Enable and LD8 is a multiple Transparent Data Latch. The dec301_2_3 symbolize the address decoder. The entity and the architecture description of the address decoder are shown in Fig. 4.

IV. FAST PHYSICAL ADDRESSING

This method uses the same technique of the data/address conversion, illustrated in the above section, for the address production of the new bus [5]. However, it uses a different process for the data transfer from the microprocessor-based system towards the input of the hardware part of the system. The input of the interface will be connected to the microprocessor-based system bus and the output will be connected to an external device.

Fig. 5 represents the Fast Physical Addressing bloc diagram. In this version, the hardware part explores the Direct Memory Access for the data exchange; consequently, the addresses on the new bus will depend on the data exchanged with the microprocessor-based system memory.
The software part of Fast Physical Addressing ensures two additional tasks. The first is to send the starting and ending positions of the accessible memory area. The second is to control the start and the end of the Direct Memory Access. The two positions of the memory area, which is addressed by the system, will be sent to the Address Generator AG on the data bus of the system bus on distinct addresses.

The DMA process of the system starts at these two data transfer. The address decoder enables the recording of these two data in the address generator circuit of the DMA. Once the process of the Direct Memory Access is started, the address generator controls the address bus of the system bus to carry out the reading or the writing on the selected memory area and enables the address decoder of the system to perform the decoding of the generated addresses. The address decoder ensures the distinction between the two types of data.

V. FAST PHYSICAL ADDRESSING IMPLEMENTATION

The proposed programmable logic implementation of Fast Physical Addressing using Xilinx (ECS) is shown in Fig. 5. A CPLD implementation with Xilinx Integrated Software Environment (ISE) 7.1i is presented. An XC95108-15PC84 device is used [4]. The main schematic of the proposed implementation is shown in Fig. 6 and the VHDL instantiation template is presented in Fig. 7. The entity and the architecture description of the address decoder are shown in Fig. 8. The schematic and the entity of the proposed Address Generator are illustrated respectively in Fig. 9 and Fig. 10.

BUFE16 is an internal 3-State Buffer with Active High Enable and LD16 is a multiple Transparent Data Latch. The fpa_dec00 represent the Fast Physical Addressing address decoder and ag01 represent Address Generator.
VI. RESULTS

The application of this version on a system bus that works with a data bus of N bits and a maximum frequency F, gives a new bus of N bits of data, and has an addressing physical capacity of $2^N$. This new bus works at a maximum frequency equal to Fn. Table 1 represents the main characteristics of Fast Physical Addressing. The maximum frequency of the new bus is described by the following formula.

$$F_n = \frac{1}{2 \times T_a}$$

where $T_a$ is the memory access time used during the DMA process, or the memory access time used in our system.

VII. CONCLUSION

In this paper, we have presented a hardware implementation of the Extended and the Fast Physical Addressing with programmable logic using Xilinx CPLD devices. This solution is based on the use of mixed software/hardware system. The Extended Physical Addressing system, which represents the starting point of our system, is exposed at the beginning. Thereafter, we presented the solution of the Fast prototype. This new system presents a solution for improving the physical addressing capacity of the microprocessor-based systems, which is independent of the addresses bus of the system bus. The main technique of this interfacing system has been applied for the implementations of prototype cards which work on IBM™ computers and compatible [6].

Currently, we are investigating the option of adapting and implementing this system in PCI bus using CPLD and FPGA devices.

REFERENCES