Surviving Abiotic Stress: The Relationship between High Light and High Salt Tolerance

Rutanachai Thaipratum

Abstract—The mechanism of abiotic stress tolerance is crucial for plants to survive in harsh condition and the knowledge of this mechanism can be used to solve the problem of declining productivity of plants or crops around the world. However in-depth description is still unclear and it is argued, in particular that there is a relationship between high salinity tolerance and the ability to tolerate high light condition. In this study, Dunaliella salina, which can withstand high salt was used as a model. Chlorophyll fluorimeter for non-photochemical quenching (NPQ) measurement and high-performance liquid chromatography for pigment determination was used. The results show that NPQ value and the amount of pigment were found in this alga [11], [12]. In this research, Dunaliella salina, was used as model organisms to determine the effect of salt concentration on induction kinetic of NPQ and to find out the actual factor that regulates induction of NPQ and accumulation of zeaxanthin apart from the level of light intensity. Since it has been reported recently that availability of CO2 affects induction of NPQ but not zeaxanthin accumulation [13].

II. MATERIALS AND METHOD

A. Plant Material and Growth Conditions

Unicellular green alga Dunaliella salina Teod. Strain 1644 was obtained from the UTEX culture collection. It was grown photoautotrophically in 125 ml Erlenmeyer flask with gentle shaking twice a day. The growth medium was an artificial hyper saline medium containing 40 mM Tris-HCl (pH7.5), 5 mM KNO3, 5 mM MgSO4, 0.3 mM CaCl2, 0.1 mM KH2PO4, 2 µM FeCl3, 20 µM EDTA, 150 µM H3BO3, 10 µM MnCl2, 2 µM Na2MoO4, 2 µM NaVO3, 0.8 µM ZnCl2, 0.2 µM CoCl2 and 0.3 µM CuCl2. An inorganic carbon source was supplied in the form of NaHCO3 at a final concentration of 25 mM. Growth temperature was maintained at 28-30°C. To adjust cell number for starter point, hemocytometer was used to count under microscope. Cell movements were inhibited by 5% iodine solution. Growth of the algae cultures were measured by OD measurement at 678 nm by spectrophotometer.

B. Chlorophyll Fluorescence Measurement and NPQ Analysis

Standard modulated chlorophyll fluorescence analyses similar to those previously described [14], [15] were performed using an FMS2 fluorometer. Briefly, cuvettes containing 1 ml D. salina cells were subjected to Chl fluorescence measurements. The algal cultures were subjected to a 1 s flash of saturated white light (10,000 µmol photons m⁻²s⁻¹) to measure Fm and then illuminated with white actinic light (2,000 µmol photons m⁻²s⁻¹) for 10 min. During the 10 min actinic illumination, the same flashes of saturated white light previously used to measure Fm' were given once in a while to the cells for determination of Fm'’. NPQ was calculated as (Fm-Fm')/Fm’’.

C. Determination of Photosynthetic Pigments

Pigment compositions in the algal cell were determined by HPLC analysis. D. salina cells aliquots were taken and centrifuged for 3 min at 3,000 g. Cell pellets were resuspended in 90% acetone and debris were removed by centrifugation at
To determine the effect of low NaCl concentration and cultivation time on the induction kinetics of NPQ in *D. salina*, cells were cultivated under 60 µmol photons m⁻²s⁻¹ in growth medium that does not contain NaCl (0 M). Cell aliquots were taken after 10 day or 20 day and subjected to NPQ analysis with or without DCMU treatment. When grown for 10 days, the NPQ value, in the absence of DCMU, was gradually increased along with the period of time under actinic light reaching the value of ~0.6 at the end of the analysis (Fig. 1A; solid symbols). In the presence of DCMU the overall induction was similar to that without DCMU treatment except that the NPQ reached to a value ~0.5 at the end of the experiment (Fig. 1A; open symbols). There is no discernible transient NPQ in this growth condition. The 20-day-old culture, regardless of the DCMU treatment, exhibited a similar NPQ induction kinetics to that of the 10-day-old (Fig. 1B). Again, there was no detectable transient NPQ even when the alga was grown for 20 days. When *D. salina* was grown for 10 and 20 days in normal growth medium (1.5 M NaCl), the transient NPQ was observed (Fig. 2; solid symbols). Such transient NPQ was almost completely relaxed in the presence of DCMU (Fig. 2; open symbols). When *D. salina* was grown in high salinity growth medium (3 M NaCl), strong transient NPQ rapidly induced reaching the value of more than 2 (Fig. 3; solid symbols). This transient NPQ was sustained in such a way that it could not be completely relaxed within a few min like that observed in the earlier results. The results of NPQ induction in response to different of salinity from low to high (Fig. 1, 2, 3), can demonstrate that, under the lowest salinity (0 M NaCl), the alga does not need glycerol to balance the osmotic pressure, no need to enhance carbon assimilation, so the leftover availability of carbon source was high. With plenty of the carbon source left in the medium, Calvin cycle is not inhibited, photosynthetic electron transport is normal, leading to normal level of the proton gradient across the thylakoid membrane. Under such condition, the transient energy dependent NPQ does not occurs and the NPQ that was induced under high light illumination was energy-independent NPQ. This finding has never been reported before in the literature.

In higher salinity (1.5 & 3 M NaCl), the alga needs more glycerol to counteract the osmotic pressure. In order to synthesize more glycerol, it needs to enhance the rate of carbon assimilation. Thus, when grown for the same period of time, the alga grown in medium with higher salinity level depletes more carbon source, so the leftover in the medium was lower. Less available carbon source leads to inactivation of the Calvin cycle, reduced redox components, proton accumulation in the lumen, leading to the formation of rapid transiently induced energy-dependent NPQ upon illumination with HL.
has no effect on NPQ induction [10], [18].

To correlate the degree of transient NPQ observed along the increasing salinity in *D. salina* with pigment composition. *D. salina* was cultivated under 60 µmol photons m⁻²s⁻¹ in 0 M, 1.5 M and 3 M NaCl media. Cell aliquots were taken after 10 and 20 days and subjected to pigment analysis by HPLC. I observed that DES of *D. salina* was increase proportionally to the cultivation time and salinity (Fig. 4A). The Ch a to Ch b ratio did not seem to differ in different salinity concentration (Fig. 4B). However, as the cultivation prolonged, the ratio was higher (Fig. 4B).

Fig. 2 Induction kinetics of NPQ in *D. salina* cultivated under 60 µmol photons m⁻²s⁻¹ in 1.5 M NaCl media. Cells were cultivated under 60 µmol photons m⁻²s⁻¹ in 1.5 M NaCl media. Cell aliquots were taken from 10 day (A) and 20 day (B) cultures and subjected the NPQ measurement as described in Materials and methods. Analyses were performed in the presence (open circle) or absence (solid circle) of 10 µM DCMU. Data points shown are averages of three measurement±SE

Fig. 3 Induction kinetics of NPQ in *D. salina* cultivated under 60 µmol photons m⁻²s⁻¹ in 3 M NaCl media. Cells were cultivated under 60 µmol photons m⁻²s⁻¹ in 3 M NaCl media. Cell aliquots were taken from 10 day (A) and 20 day (B) cultures and subjected the NPQ measurement as described in Materials and methods. Analyses were performed in the presence (open circle) or absence (solid circle) of 10 µM DCMU. Data points shown are averages of three measurement±SE

IV. CONCLUSION

To determine the effect of carbon source availability on induction kinetic of NPQ and accumulation of zeaxanthin, induction kinetics of NPQ and accumulation of zeaxanthin were followed and compared between cultures from different culture period, different sodium chloride concentration in growth media as the indirect way to change carbon source availability in this alga.

The result showed that, the development of NPQ in *D. salina* is actually depend on carbon source availability and can be divided into three apparent stages along with the level of carbon source availability from high to low, first stage is the energy-independent NPQ follow by transient energy-dependent NPQ and the last stage is almost dominated by energy-dependent NPQ.
Fig. 4 Pigment compositions of *D. salina* cultivated under 60 µmol photons m⁻² s⁻¹ in 0 M NaCl media, 1.5 M NaCl media and 3 M NaCl media. Cells were cultivated under 60 µmol photons m⁻² s⁻¹ in 0 M NaCl media, 1.5 M NaCl media and 3 M NaCl media respectively. Cell aliquots were taken from 10 day (solid bar) and 20 day (open bar) cultures and subjected the pigment determination as described in Materials and methods. A De-epoxidation state (DES) of the xanthophylls cycle. B Chl a to Chl b ratio. Data points shown are averages of three measurements±SE.

ACKNOWLEDGMENT
This work was financially supported by Research and Development of Suan Sunandha Rajabhat University, Bangkok, Thailand.

REFERENCES


Rutnachai Thaipratum was born in Nakhon Ratchasima City (the city in the northeast of Thailand) on March 20, 1982. He received his B.Sc. degree in Biochemistry from Khon Kaen University (KKU), Khon Kaen, Thailand in 2002 and Ph.D. degree in Biochemistry from Mahidol University (MU), Bangkok, Thailand in 2009. Since June 2010, he has been a lecturer of the Department of Science at Suan Sunandha Rajabhat University (SSRU), in Bangkok. His main research interests include plant biochemistry and physiology.