Abstract—In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords—Machine loading problem, FMS, Particle Swarm Optimization.

I. INTRODUCTION

FMS operational decisions consist of pre-release and post-release decisions. FMS planning problems also known as pre-release decisions take into account the pre-arrangement of parts and tools before the process of FMS begins. FMS scheduling problems, which come under the category of post-release decisions, deal with the sequencing and routing of the parts when the system is in operation [1]. The machine loading problem in a FMS is specified as to assign the machine, operations of selected jobs, and the tools necessary to perform these operations by satisfying the technological constraints (available machine time and tool slots constraint) in order to ensure the minimum system unbalance and maximum throughput, when the system is in operation [2]. An attempt has been made to solve the objective function simultaneously to bring the outcomes in close proximity to the real assumption of the FMS environment.

II. LITERATURE REVIEW

Since the objective of this paper is to propose an efficient evolutionary search heuristic to solve problem pertaining to job selection and machine loading in random FMS to optimize the system imbalance and throughput simultaneously, only the relevant literature are reviewed in this section.

Tiwari and Vidyarthi [1] proposed a Genetic Algorithm (GA) based heuristic to solve the machine loading problem of a random type FMS. The proposed GA-based heuristic determines the part type sequence and the operation-machine allocation that guarantee the optimal solution to the problem, rather than using fixed predetermined part sequencing rules.

Swarnkar and Timari [2] proposed a generic 0-1 integer programming formulation and a hybrid algorithm based on tabu-search and simulated annealing (SA) is employed to solve the problem.

Prakash et al. [3] proposed a special Immune Algorithm (IA) named "Modified immune algorithm (MIA)". This method is capable of learning and memory acquisition. This method improves some issues inherent in existing IAs and proposes a more effective immune algorithm with reduced memory requirements and reduced computational complexity.

Chan et al. [4] proposed a fuzzy goal programming approach to model the machine tool selection and operation allocation problem of flexible manufacturing systems. The model is optimized using an approach based on artificial immune systems and the results of the computational experiments are reported.

Tripathi et al. [5] proposed a multi-agent-based approach for solving the part allocation problems in flexible manufacturing systems (FMS) that can easily cope with the dynamic environment.

Akhilesh Kumar et al. [6] extended the simple genetic algorithm and proposed a new methodology, constraint based genetic algorithm (CBGA) to handle a complex variety of variables and constraints in a typical FMS-loading problem.

Yogeswaran et al. [7] proposed a hybrid algorithm using genetic algorithm and simulated annealing (GASA) algorithm for his problem. They also proposed efficient machine loading heuristics.

The machine loading problem of a flexible manufacturing system is well known for its complexity. This problem encompasses various types of flexibility aspects pertaining to part selection and operations assignments along with constraints ranging from simple algebraic to potentially very complex conditional constraints. In this paper, a particle swarm optimization algorithm is proposed to solve this
problem. The literature survey clearly supports the proposal of an efficient heuristic to this problem. Besides that, the justification to adopt particle swarm optimization is mainly due to its performance in solving scheduling problems. The advantages of PSO are that PSO is easy to implement and there are only few parameters to adjust. So far, PSO has not been tried to solve the machine loading problem. Problem Environment

The FMS under consideration in this paper consists of a number of multifunctional CNC machines, tools with the potential to execute several operations. The jobs are available in batches and arrive in random sequences with different requirements for processing. The batch size, number of operations, processing time and number of tool slots needed for each job is known initially. There are two types of operations accessible for a job namely:

- Essential operation – job can be only performed in a particular machine.
- Optional operation – job can be performed in a number of machines available.

Optional operation gives the flexibility in routing of the jobs. The FMS considered has four multifunctional machines with each having 480mins of available processing time (8hrs = 1 shift) and 5 tool slots. The notations used in this paper are given in Table I.

III. OBJECTIVE FUNCTION AND CONSTRAINTS

The objective functions and the constraints are discussed in this section. These are adapted from reference [2].

Minimize system unbalance: equals to the sum of the idle time remaining on the machines after allocation of all feasible jobs. The value of system unbalance must be either 0 (100% utilization of the system) or a positive value.

\[SU = \sum_{j=1}^{M} (OT_j - UT_j) \]

Maximize throughput: is equals to the sum of batch size for all the selected jobs during the planning horizon.

\[TH = \sum_{i=1}^{N} B_i \times x_i \]

Thus the overall objective function is:

\[Maximize _{COF} = \frac{M \times H - \sum_{j=1}^{M} (UT_j - OT_j)}{M \times H} + \frac{\sum_{i=1}^{N} B_i \times x_i}{M \times H} \]

The objective function prescribed in equation (3) is subjected to the constraints detailed below.

- System unbalance: equals to the sum of the idle time remaining on the machines after allocation of all feasible jobs. System unbalance should be bigger than or equals to 0 (100% utilization of the system).
- Tool slots: number of slots needed for the operation of the jobs to be performed on a machine must be always be less than or equals to the tool slots available in that machine.
- Unique job routing: despite the flexibility existing in the selection of the machine for optimal operations, once a machine is selected, the operation has to be completed on the same machine.
- Non-splitting of job: once a job is considered for processing, all the operations are to be completed before undertaking a new job.
- Sharing of the tool slots is not considered.
• Number of pallets and fixtures used in the system are sufficient and readily available.
• Parts are readily available on machines so material handling time is negligible.

IV. PROPOSED ALGORITHM

PSO is a population-based, bio-inspired optimization method. It was originally inspired in the way crowds of individuals move towards predefined objectives, but it is better viewed using a social metaphor. Individuals in the population try to move towards the fittest position known to them and to their informants, that is, the set of individuals that are their social circle \[8\]. The objective is to maximize a fitness function. The structure of the proposed PSO algorithm is presented in Fig. 1.

\[\begin{array}{c}
t \rightarrow 0; \\
\text{for } (k = 1, N) \\
\text{Generate } P'_k; \\
\text{Evaluate } Z(P'_k); \\
\text{for } (k = 1, N) \\
\text{Initialise } v'_k; \\
\end{array}\]

//iterative improvement process
\[
\text{do } \left\{ \\
\text{for } (k = 1, N) \\
\text{update Position } P^{t+1}_k; \\
\text{update velocity } v^{t+1}_k; \\
\text{Apply local search on all particle positions; } \\
\text{Evaluate all particles; } \\
\text{update } eP^{t+1}_k \text{ and } G^{t+1}_k, \text{ (} k = 1, N); \\
t \rightarrow t + 1; \\
\text{[while } t < t_{\text{max}} \text{]} \\
\text{Output } G^t
\end{array}\]

Fig. 1 The proposed PSO algorithm.

V. OPERATIONS PERFORMED TO UPDATE POSITION AND VELOCITY

Various operations performed for computing particle velocity and updating particle positions are explained below:

Subtraction (position - position) operator: Let \(x_2 \) and \(x_1 \) be two positions representing two different sequences. The difference \(x_2 - x_1 \) is a velocity \(v \). For example, subtracting two positions in the velocity update equation results in a velocity which is a set of transpositions.

Addition (position + velocity) operator: Let \(x \) be the position and \(v \) be the velocity. New position \(x_i \) is found by applying the first transposition of \(v \) to \(p_i \), i.e., \(x_i = x + v \) then the second one to the result etc.

Addition (velocity + velocity) operator: Let \(v_1 \) and \(v_2 \) be two velocities. In order to compute \(v_1 + v_2 \), we consider the list of transpositions which contains first the ‘ones’ of \(v_1 \), followed by the ‘ones’ of \(v_2 \).

Multiplication (Coefficient X velocity) operator: Let \(c \) be the learning coefficient and \(v \) be the velocity, \(c \times v \) results in a new velocity.

VI. NUMERICAL ILLUSTRATION

A numerical illustration of the proposed PSO algorithm is presented in this section. The readers are advised to refer \[2\] for the test problems used to evaluate the proposed algorithm. A sample test problem is shown in Table II.

<table>
<thead>
<tr>
<th>Job</th>
<th>Batch Size</th>
<th>Number of Operations</th>
<th>Operation</th>
<th>Machine</th>
<th>Unit Processing Time</th>
<th>Tool Slots</th>
<th>Total Processing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22</td>
<td>3</td>
<td>264</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>3.2</td>
<td>25</td>
<td>1</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>30</td>
<td>2</td>
<td>480</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>3</td>
<td>231</td>
</tr>
</tbody>
</table>

A. Initialization

Parameters such as swarm size, number of generations \(t \), constants \(C1, C2 \) and \(C3 \) must be initialized. The job/machine data (test problem) will be inputted in this phase. The swarm size used is equivalent to the number of jobs. The termination condition and the \(C1, C2, C3 \) are identified after conducting sensitivity analysis.

B. Particle Generation

The seed sequence is created using the widely used SPT rule. Subsequently the swarm is generated from circular perturbation method \[7\]. The searching phase is iterated to the predetermined number of iterations. Lastly, the final optimum result will be obtained via the global best variable.

C. Velocity Initialization

After the swarm is initialized, each potential solution is assigned a velocity randomly. Length of velocity of each
particle \(||v||\) is generated randomly between 0 and \(n\). And the corresponding lists of transpositions \(\{q_i, j_q\}\) are generated randomly for each particle. The above formulation permits exchange of jobs \((i_j, j_i), (i_j, j_2)\ldots (i_j, j_3)\) in the given order. Each particle keeps track of the its improvement and the best objective function value achieved by the individual particles so far is stored as local best solution \(cP_k\) and the overall best objective function achieved by all the particles together so far is stored as the global best solution \(G_k\). The iterative improvement process, as explained in Fig. 1 is continued afterwards.

D. Velocity and Position Update

Particles velocity is continuously updated using equation 4 and the particles position is continuously updated using equation 5.

\[
v_{k}^{t+i} = c_1 U_1 v_{k}^{t} + c_2 U_2 (cP_{k-1} - P_k) + c_3 U_3 (G - P_k)
\]

\[
P_{k}^{t+i} = P_k + v_{k}^{t+i}.
\]

Where, \(c_1, c_2, c_3\) are integers and \(U_1, U_2\) and \(U_3\) are random numbers between 0 and 1.

For example, let \(P_k\) represents a sequence \(\{2,3,4,1\}\) with \(C1=1, C2=2, C3=2, 2.0U1\) and \(v = ((1, 4),(2, 3))\) and \(cP_k\) and \(G\) be \((1,4,3,2)\) and \((3,1,4,2)\) respectively. Velocity of the particle \(k\) at time step \(t+1\) namely \(v_{k}^{t+i}\) is obtained using equation 4 as follows.

\[
v_{k}^{t+i} = 1x 0.2 [(1,4),(2,3)] \oplus 2 x 0.4 [(1,4,3,2) - (2,3,4,1)] \oplus 2 x 0.3 [(3,1,4,2) - (2,3,4,1)]
\]

Where \([(1,4,3,2) - (2,3,4,1)]\) represents a velocity such that applying the resulting velocity to the current particle \((2,3,4,1)\) yields a position \((1,4,3,2)\).

Thus, \(v_{k}^{t+i} = 0.2 [(1,4),(2,3)] \oplus 0.8 [(2,3), (1,4)] \oplus 0.6 [(1,2), (1,4)]
\[
= ((1,4),(2,3),(1,2)).
\]

Similarly, position of the particle \(k\) at time step \(t+1\) namely \(P_{k}^{t+i}\) is obtained using equation 5 by applying \(v_{k}^{t+i}\) over \(P_k\) as follows.

\[
P_{k}^{t+i} = (2,3,4,1) + (1,4), (2,3),(1,2))
\]

\[
= (1,3,4,2) + ((2,3),(1,2))
\]

\[
= (1,4,3,2) + ((1,2))
\]

\[
= (1,4,2,3).
\]

VII. LOCAL SEARCH MECHANISM

The concept of the PSO algorithm is very simple and straightforward. It uses equations 4 and 5 to recursively update position of the particles till the termination criterion is met. In the present work, termination criterion is taken as 100 iterations of the PSO algorithm.

In some cases, it is found that PSO get stuck in local optima at an early stage and resulted in non-improvement during remaining iterations. In order to overcome the above problem and to improve its performance, two local search methods were adopted in the proposed PSO to improve the quality of the solution. They are the Job index Based Insertion Scheme (JiBIS) proposed by Varadharajan and Rajendran [9] and the Random Start Adjacent Swapping Scheme (RSASS) proposed by Chandrasekaran et al. [10].

Job Index Based Insertion Scheme

Let us consider a six job problem, whereby the current particle has the sequence, \(\{3,2,5,1,4,6\}\). Hence, this sequence shall be the first SEED sequence. Element 1 is inserted into all positions within the sequence as the current index number is 1. The fitness value is evaluated for all particles in the population.

Iteration 1

Sequence 1 = \{1,3,2,5,4,6\}. Fitness (1) = 1.24
Sequence 2 = \{3,1,2,5,4,6\}. Fitness (2) = 1.56
Sequence 3 = \{3,2,1,5,4,6\}. Fitness (3) = 1.63
Sequence 4 = \{3,2,5,1,4,6\}. Fitness (4) = 1.18 // Current SEED
Sequence 5 = \{3,2,5,4,1,6\}. Fitness (5) = 1.79 // SEED for next iteration
Sequence 6 = \{3,2,5,4,6,1\}. Fitness (6) = 1.50

Then element 2 is inserted into all positions and evaluated.

Iteration 2

Sequence 1 = \{2,3,5,4,1,6\}. Fitness (1) = 1.55
Sequence 2 = \{3,2,5,4,1,6\}. Fitness (2) = 1.59 //Current SEED
Sequence 3 = \{3,5,2,4,1,6\}. Fitness (3) = 1.27
Sequence 4 = \{3,5,4,2,1,6\}. Fitness (4) = 1.33
Sequence 5 = \{3,5,4,1,2,6\}. Fitness (5) = 1.88 //SEED for next iteration
Sequence 6 = \{3,5,4,1,6,2\}. Fitness (6) = 1.52

Similarly, after going through \(n = 6\) iterations and fitness improvements, the JiBIS local search is intended to improve the fitness of the current particle executed in the PSO algorithm for every PSO iteration.

Position Based Local Search (PBLS)

A position based local search improvement algorithm is applied for the quick search of optimal solution. This local search is applied after finding local best and global best solutions.

1) Select a Particle \(P\);
2) Initialize \(i = 1, j = i+1\); Select \(i\)
3) Swap \(i\) with \(j\) to generate a new sequence
4) Evaluate the new sequence;
5) if (new sequence is better)
 replace \(P\) with the new sequence;
 terminate the search process;
 else
swap j with i;
\[j = j + 1; \]
\[i = i + 1; j = i + 1; \]
go to step 3

VIII. RESULTS AND DISCUSSIONS

The performance of the proposed PSO and the local search heuristics in terms of the objective function value and the CPU times for the ten problems over the best performing heuristic (GASA proposed by Yogeswaran et al. [7]) so far reported in the literature are presented in Table III. The objective function values obtained by the two algorithms are the same. The advantage of the proposed PSO is its shorter computational time. Table III clearly indicates the superior performance of position based local search. The average CPU time of GASA for the ten problems is 4.2842 and for PSO with PBLBS is 0.59567. The saving in CPU time form PSO is about 80%, which is very significant. The results clearly indicate the comparable performance of the proposed PSO with the existing better performing heuristic. The performance of the proposed PSO is compared with the heuristics reported in the literature and the results are presented in Table IV. The results show the comparable performance of the proposed PSO over other heuristics.

TABLE III

PERFORMANCE COMPARISON BETWEEN PSO AND GASA

<table>
<thead>
<tr>
<th>Data set</th>
<th>Objective function value</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASA [7]</td>
<td>PSO+ PBLBS</td>
<td>PSO+ PBLBS</td>
</tr>
<tr>
<td>1</td>
<td>1.5927</td>
<td>1.5927</td>
</tr>
<tr>
<td>2</td>
<td>1.8516</td>
<td>1.8516</td>
</tr>
<tr>
<td>3</td>
<td>1.9095</td>
<td>1.9095</td>
</tr>
<tr>
<td>4</td>
<td>1.5734</td>
<td>1.5734</td>
</tr>
<tr>
<td>5</td>
<td>1.6651</td>
<td>1.6651</td>
</tr>
<tr>
<td>6</td>
<td>1.8574</td>
<td>1.8574</td>
</tr>
<tr>
<td>7</td>
<td>1.6874</td>
<td>1.6874</td>
</tr>
<tr>
<td>8</td>
<td>1.6529</td>
<td>1.6529</td>
</tr>
<tr>
<td>9</td>
<td>1.8391</td>
<td>1.8391</td>
</tr>
<tr>
<td>10</td>
<td>1.7723</td>
<td>1.7723</td>
</tr>
</tbody>
</table>

IX. CONCLUSION

It is clear from this research that the machine loading problem can be solved by using a PSO based heuristic that can tackle the problem in a synergistic way. By combining effective local search and PSO, resource allocation can be done efficiently. This research had also highlighted the efficiency of the local search algorithm in the optimization process. The local search algorithm reduced the time to reach the best fitness value by a considerable amount in some cases. The results presented in Tables III and IV clearly show that the PSO algorithm is comparable to the better performing algorithms reported in the literature and it obtains the best results obtained so far at a faster rate. The results reported in Table III are obtained from PSO with Job Index Based Insertion local search.

The future work is to fine tune the parameters of PSO and proposing efficient machine selection heuristics. The machine selection heuristics play a major role in achieving better results.

REFERENCES

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Reference number of the heuristics collected from the open literature</th>
<th>Proposed PSO with PBLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3557 1.4615 1.4854 1.5927 1.4839 1.5927 1.5927 1.4839 1.5927 1.5927 1.5927 1.5927 1.5927 1.5927 1.5927</td>
<td>1.5927</td>
</tr>
<tr>
<td>2</td>
<td>1.4965 1.7578 1.7411 1.6208 1.7984 1.5204 1.7411 1.7984 1.6208 1.7984 1.6208 1.8516 1.8516</td>
<td>1.8516</td>
</tr>
<tr>
<td>3</td>
<td>1.6475 1.8510 1.7943 1.8359 1.8574 1.8574 1.8574 1.8245 1.8359 1.8359 1.9095 1.9095</td>
<td>1.9095</td>
</tr>
<tr>
<td>5</td>
<td>1.5726 1.8104 1.6651 1.6000 1.6062 1.5726 1.8104 1.6651 1.6062 1.6062 1.6000 1.6651 1.6000</td>
<td>1.6651</td>
</tr>
<tr>
<td>6</td>
<td>1.4132 1.6592 1.7516 1.8210 1.8408 1.5204 1.8408 1.7151 1.8408 1.8210 1.8210 1.8731</td>
<td>1.8731</td>
</tr>
<tr>
<td>7</td>
<td>1.5939 1.7696 1.0966 1.6064 1.6064 1.5546 1.6001 1.6001 1.6064 1.6064 1.6064</td>
<td>1.6064</td>
</tr>
<tr>
<td>8</td>
<td>1.2752 1.2752 1.5320 1.6529 1.6218 1.6482 1.6529 1.6218 1.6218 1.6218 1.6218</td>
<td>1.6218</td>
</tr>
<tr>
<td>9</td>
<td>1.6571 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.8391</td>
<td>1.8391</td>
</tr>
<tr>
<td>10</td>
<td>1.3869 1.6692 1.7344 1.7723 1.7633 1.7622 1.7723 1.7723 1.7633 1.7723 1.7723</td>
<td>1.7723</td>
</tr>
</tbody>
</table>