Propagation of a Generalized Beam in ABCD System

Halil Tanyer Eyyuboğlu

Abstract—For a generalized Hermite sinosiodal / hyperbolic Gaussian beam passing through an ABCD system with a finite aperture, the propagation properties are derived using the Collins integral. The results are obtained in the form of intensity graphs indicating that previously demonstrated rules of reciprocity are applicable, while the existence of the aperture accelerates this transformation.

Keywords—Optical communications, Hermite-Gaussian beams, ABCD system.

Introduction

Up to now, we have investigated the characteristics of cosh-Gaussian [1], cos-Gaussian [2] Hermite-cosh-Gaussian [3], Hermite cos-Gaussian [4] and Hermite-sinh-Gaussian [5] beams propagating in turbulent atmosphere. In this particular study, we take a generalized Hermite sinosiodal / hyperbolic Gaussian source beam, and pass it through an ABCD system with a finite aperture by applying the Collins integral eventually to obtain the receiver field.

Such beams have been studied for on-axis and also for off-axis situations. For instance, [6]-[10] deal with the propagation properties of these beams for axial (on-axis) cases, while [11]-[13] cover the off-axis cases as well as the less general beams such as Hermite-Gaussian type.

It is known that this kind of studies contribute to optical communications, laser radar, imaging and remote sensing applications [14].

Formulation

The propagation geometry, illustrated in Fig. 1, is arranged as source and receiver planes lying perpendicular to the axis of propagation, z. The filling medium is free space, i.e., no turbulent atmosphere. The x and y coordinates on the source plane are denoted by the vector s decomposed as \( s = (s_x, s_y) \).

At the receiver plane, \( p \) is the transverse position vector decomposed as \( p = (p_x, p_y) \). In this setup, \((s)\) or \((p, z = 0)\) will mean a location on the source plane, whereas \((p, z = L)\) will point to a location on the receiver plane.

If optical elements are placed along the propagation axis, \( z \), their combined effects will be described by a 2x2 ABCD ray matrix. For instance, the simple case of a thin lens with focal length \( f \) will have the following representation

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
-1/f & 1
\end{bmatrix} \quad (1)
\]

Normally, the series of elements (or parts of the medium) encountered on the propagation path will be accounted for by the multiplication of the individual matrices in the reverse order, that is from receiver towards source. For our present purposes however, it is sufficient to carry on with a single ABCD matrix, also noting that, for line of sight, i.e., for free space, the related matrix will take the form

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
1 & L \\
0 & 1
\end{bmatrix} \quad (2)
\]

where \( L \) measures the distance from the source plane to the receiver plane.

The source field, \( u_s(s) = u_s(s_x, s_y) \) is expressed as

\[
u_s(s) = A_H \alpha \left( a_s s_x + b_s \right) \exp \left\{-0.5s_x^2/a_x^2 + s_y^2/a_y^2\right\} \times \left| \exp \left[ j\left(V_{sx} s_x + V_{sy} s_y\right) \right] + l_x \exp \left[ j\left(Y_{sx} s_x + Y_{sy} s_y\right) \right] \right| \quad (3)
\]

Here, \( \alpha \) is the amplitude normalization term and for convenience will be set to unity from this point onwards, \( j = (-1)^{0.5} \), \( a_x \) and \( a_y \) refer to source sizes of the Gaussian beam in \( x \) and \( y \) directions. Hermite polynomials, \( H_n(a_x s_x + b_s) \) and \( H_n(a_x s_x + b_x) \), denote the field distributions of order \( n \), width \( a_s \) and displacement \( b_s \) for \( s_x \) axis and of order \( m \), width \( a_x \) and displacement \( b_x \) for \( s_y \) axis. \( V_{sx}, V_{sy}, Y_{sx}, Y_{sy}, l_x \) and \( l_y \) will, as explained in [5], successively produce cos-Gaussian, cosh-Gaussian, sine-Gaussian and sinh-Gaussian beams. In our terminology, (3) is regarded to represent the generalized Hermite sinosiodal / hyperbolic Gaussian beam types, shortened as generalized beam within the scope of this study.

The field at the receiver plane, \( u_r(p, z = L) = u_r(p_x, p_y, z = L) \) is to be calculated via...
Collins integral (also known as extended Hugens-Fresnel integral)

\[ u_r(p, z = L) = \frac{jk}{(2\pi B)} \int_{t_1}^{t_2} \int d^3 s u_r(s) \times \exp\left\{-0.5jk\left[A(s_i^2 + s_j^2) - 2(s_i, p_i + s_j, p_j) + D(p_i^2 + p_j^2)\right]/B\right\} \]

where A and B are the elements belonging to ABCD matrix, \( k = 2\pi/\lambda \) is the wave number with \( \lambda \) being the wavelength of operation and \( u_r(s) \) is the source field defined as given in the Appendix, the following integral)

\[ g_{\alpha \beta}^{\gamma \delta} = \frac{2}{\pi} \frac{\exp\left[-0.5(Ba_\alpha Q_{\alpha \beta})\right]}{(Ba_\alpha Q_{\alpha \beta})} \left(t_{\alpha \beta} Q_{\alpha \beta} - ja_\beta Q_{\beta \gamma}\right)^{n-1} \]

\[ \frac{n}{(a_{\gamma \delta} - a_{\gamma \delta})} \left(2^{n-1}\right) \sum_{k_{\alpha \beta} = 1}^{n-1} \sum_{l_{\alpha \beta} = 1}^{n-1} \left(\frac{k_{\alpha \beta} - k_{\gamma \delta}}{l_{\alpha \beta} - l_{\gamma \delta}}\right)^{n-1} \]

\[ \times \frac{0.5}{(2^{n-1})} \left(t_{\alpha \beta} Q_{\alpha \beta} - ja_\beta Q_{\beta \gamma}\right)^{n-1} \]

From (6), \( S_{xy} \) is obtained by changing all \( x \) subscripts to \( y \) and \( n \) indices to \( m \). \( S_{yx} \) is the same as \( S_{xy} \) except that all \( V_i, s' \) are to be replaced by \( Y_i, s' \). Finally \( S_{yy} \) is the same as \( S_{yx} \) except that all \( V_i, s' \) are to be replaced by \( Y_i, s' \). The definitions for the rest of the terms appearing in (5) and (6) are,

\[ Q_{\alpha \beta} = B_{\alpha \beta} + k_{\alpha \beta}, \quad Q_{\gamma \delta} = B_{\gamma \delta} + k_{\gamma \delta}, \quad Q_{\gamma \delta} = B_{\gamma \delta} + k_{\gamma \delta} \]

\[ g_{\alpha \beta} \] and \( g_{\gamma \delta} \) take on the values +1 and -1 determined by the following conditions,

\[ g_{\alpha \beta} = +1, \quad g_{\gamma \delta} = +1, \quad \text{when } \left|ja_\beta Q_{\beta \gamma}/Q_{\gamma \delta}\right| \leq t_{\alpha \beta} < t_{\gamma \delta} \]

\[ g_{\alpha \beta} = -1, \quad g_{\gamma \delta} = -1, \quad \text{when } t_{\alpha \beta} < \left|ja_\beta Q_{\beta \gamma}/Q_{\gamma \delta}\right| < t_{\gamma \delta} \]

\[ g_{\alpha \beta} = -1, \quad g_{\gamma \delta} = +1, \quad \text{when } t_{\alpha \beta} < \left|ja_\beta Q_{\beta \gamma}/Q_{\gamma \delta}\right| \leq t_{\gamma \delta} \]

\[ g_{\alpha \beta} = +1, \quad g_{\gamma \delta} = -1, \quad \text{when } t_{\alpha \beta} < \left|ja_\beta Q_{\beta \gamma}/Q_{\gamma \delta}\right| \leq t_{\gamma \delta} \]

real(x) refers to the real part of x, \( ! \) means the factorial notation, \((k)!! = 1x3x5\ldots(k-1) \) or \((k)!! = 2x4x6\ldots(k) \) depending on whether k is odd or even. The square brackets appearing as the upper limit of some summations indicate that the integral part of the enclosing expression is to be taken. The operator, rem(k,2), generates the remainder of k when divided by 2. The sign \(|x|\) implements the absolute value operation on x. All forms of \( \frac{C_i}{C_j} \) correspond to Binomial coefficients, such that,

\[ \frac{C_i}{C_j} = C_1^j \left[\left(C_i^1 - C_j^1\right)! / C_j^1!\right] \]

\[ T_{\alpha \beta} = 1x3x5\ldots(x-1) \quad \text{for } \alpha = 0, \quad \text{erf} \text{ is the error function.} \]

For the intensity at receiver plane, we need to multiply the receiver field with its conjugate, hence

\[ I_r(p, z = L) = u_r(p, z = L) u_r^{*}(p, z = L) \]

where, * stands for the conjugate. Notice that in the case of evaluating the receiver intensity, the exponential on the first line of (5) resolves to unity.
III. RESULTS AND DISCUSSION

In this section, we present our results in the form of graphs. Initially, to ensure the reliability of the currently offered formulation, we test it against the well-proven cases. By letting \( V_x = V_y = -j50, \ Y_x = Y_y = j50, \ l_x = l_y = 0.5, \ I_{11} \rightarrow -\infty, \ l_{12} \rightarrow +\infty, \) that is the Hermite cos-Gaussian beam without any aperture confinements, the receiver intensity including the source intensity are plotted in Fig. 2, at propagation distances of \( L = 2, \ 5 \) and \( 20 \) km. The numeric values of other source parameters used in this plot are shown in the box inset of Fig. 2, with the undisplayed parameters of the \( y \) axis being the same as those of the \( x \) axis. Here we note that Fig. 2 of this paper would be equivalent, both in shape and magnitude terms, to Fig. 6 of [5], if in the latter, the turbulence is eliminated, which means, where \( C_n^\alpha \) is the structure constant. From Fig. 2, it is further noted that, due to the absence of turbulence and the mode indices \( (n, m) \) employed, the intermediate stage of Hermite sine-Gaussian beam is observed at \( L = 20 \), instead of the eventual Gaussian profile as in Fig. 6 of [5]. At this stage, we would like to point out that the conversion of a hyperbolic source beam to a sinusoidal beam after propagation and vice versa is an event which we have named reciprocity. This subject was treated in details in our earlier publications [1] – [5]. In the light of explanations provided in [3] – [5] Hermite sine-Gaussian, rather than Hermite cos-Gaussian, transformation is to be expected under these circumstances, since the sum of mode indices is odd, i.e., \( n + m = 1 \).

In Fig. 2 and in the subsequent plots, we have adopted the following normalization procedure for source and receiver intensities respectively.

\[
\begin{align*}
I_{s}\left(s_x, s_y\right) &= I_{s}\left(s_x, s_y\right) / \text{Max}\left[I_{s}\left(s_x, s_y\right)\right] \\
I_{r}\left(s_x, s_y\right) &= I_{r}\left(s_x, s_y\right) / \text{Max}\left[I_{s}\left(s_x, s_y\right)\right]
\end{align*}
\]

(8)

Here, \( \text{Max} \) selects the peak value in \( I_{s}\left(s_x, s_y\right), \) where, \( I_{s}\left(s_x, s_y\right) \), is the intensity at source plane, thus \( I_{s}\left(s_x, s_y\right) = u_{s}\left(s_x, s_y\right)u_{s}^*\left(s_x, s_y\right) \)

Next, leaving the examination of cascaded optical elements on the propagation path to future studies, we investigate the effects of finite aperture sizes in free space conditions. To this end, Fig. 3 shows the progress of the same beam of Fig. 2 along the propagation axis, after setting the ABCD matrix as in (2). Here we observe that, the existence of the aperture naturally lowers the magnitude, but more importantly, the conversion towards Hermite sine-Gaussian shape is accelerated. Hence the transformation to Hermite sine-Gaussian beam occurs at earlier distances. It is further observed that at the base of Hermite sine-Gaussian profile, there is an annular construction, despite the fact that our aperture is a square one.

Finally, we illustrate in Fig. 4, the contour plot of the receiver beam of Fig. 3 at \( L = 5 \) km, where the borders of the aperture are also marked. Fig. 4 shows that Hermite sine-Gaussian shape is slightly deformed, also the symmetry of the whole beam, with respect to the slanted axis, is radially oriented due to unequal mode indices [4].

IV. CONCLUSION

In this study, using Collins integral, we have examined the propagation properties of a generalized Hermite sinusoidal or hyperbolic Gaussian beam passing through an ABCD system with a finite aperture. In addition to adopting a general source beam, our formulation also incorporates an arbitrary aperture shape and freely selectable matrix elements of the ABCD system. A narrow focus on the subject has been offered presently, but due to the generality of our formulation, it is envisaged that studies on other aspects can easily be undertaken in future work.

APPENDIX

In this appendix, the derivations steps from (4) to (5) are somewhat elaborated.

After writing the series expansion for Hermite polynomials, the integral in (4) is converted into a simplified form of

\[
I = \int_0^\infty x^a \exp\left(-px^2 + 2q\right) \, dx
\]

(9)

For finite values of \( a \) and \( b \), no readily available solution exists in the literature for (9), therefore we have had to evaluate it via the method of integration by parts. Solving (9) as an indefinite integral, and then inserting the limits, an analytic result is obtained, with various terms exhibiting conditional dependency on the parameters \( a, b, q \) and \( p \) as stated below,

\[
I = \exp\left(q^2 / p\right) \left(q / p\right)^n \sum_{k=0}^{n} \frac{q^k p^{a+b}}{2^n k! n-k)!} \times \left\{ \sum_{j=0}^{\lfloor n(j-1)\rfloor} \frac{(k_i-1)!!}{(k_i-1-2j)!!2^j} \left\{ g_j \exp[-p(a-q/p)^2] \right\} \times \left\{ p(a-q/p)^{10/(k_i-1)-4} g_j \exp[-p(b-q/p)^2] \right\} \times \left\{ p(b-q/p)^{10/(k_i-1)-4} \right\} \right\}
\]

(10)

Finally, we illustrate in Fig. 4, the contour plot of the receiver beam of Fig. 3 at \( L = 5 \) km, where the borders of the aperture are also marked. Fig. 4 shows that Hermite sine-Gaussian shape is slightly deformed, also the symmetry of the whole beam, with respect to the slanted axis, is radially oriented due to unequal mode indices [4].

Finally, we illustrate in Fig. 4, the contour plot of the receiver beam of Fig. 3 at \( L = 5 \) km, where the borders of the aperture are also marked. Fig. 4 shows that Hermite sine-Gaussian shape is slightly deformed, also the symmetry of the whole beam, with respect to the slanted axis, is radially oriented due to unequal mode indices [4].
Upon inspection, it is seen that the conditions listed above are essentially the same as those stated in the main text. We note that in the limit of \( a \to -\infty, b \to \infty \), (A2) will reduce to (3.462.2) of [15].

Since, there is no coupling between \( s_x \) and \( s_y \), applying (A2) to (4) twice individually, we finally arrive at (5).

ACKNOWLEDGMENT

The author wishes to thank Emre Sermutlu, staff member of Mathematics and Computer Department of Çankaya University, for the basic solution of the integral (A1) given in the Appendix.

REFERENCES


Halil Tanyer Eyyuboğlu received B.Sc. from Birmingham in 1976, M.Sc. and Ph.D. from Loughborough University in 1977 and 1982 respectively. For sixteen years, he served in Turkish PTT, finally becoming the director of Research and Development. He also lectured at various Universities. For two years, he acted as the Ankara Regional Manager of TELSIM, the second largest GSM operating company of Turkey. Currently he is a lecturer at Electronic and Communication Department of Cankaya University researching in areas such FSO, CDMA and Telecom Regulation.
Intensity of generalized Hermite-Gaussian beam at source plane

\[ n = 1, \ m = 0, \ \alpha_s = 33.3 \text{ m}^{-1}, \ \beta_s = 0.0 \]

\[ x_s = 3.0 \text{ cm}, \ V_x = 0 - j 50 \text{ m}^{-1}, \ L = 0 \text{ km} \]

Intensity of generalized Hermite-Gaussian beam at receiver plane

\[ I_r \]

\[ I_s \]

\[ x_r \]

\[ y_r \]

\[ z = z \]

\[ z = L \]

Fig. 1 Propagation geometry

Fig. 2 Combined 3-D plots of source and receiver plane intensities at \( L = 2, 5, 20 \text{ km} \) with no aperture
Fig. 3 Combined 3-D plots of source and receiver plane intensities at $L = 2$, 5, 20 km with aperture

Fig. 4 Combined contour plots of source and receiver plane intensities at $L = 5$ km with aperture