On Positive Definite Solutions of Quaternionic Matrix Equations

Minghui Wang

Abstract—The real representation of the quaternionic matrix is defined and studied. The relations between the positive (semi) definite quaternionic matrix and its real representation matrix are presented. By means of the real representation, the relation between the positive (semi) definite solutions of quaternionic matrix equations and those of corresponding real matrix equations is established.

Keywords—Matrix equation, Quaternionic matrix, Real representation, positive (semi) definite solutions.

I. INTRODUCTION

In the study of quaternionic quantum mechanics and some other applications of quaternions [1], [2], [3], one often encounters the problem of solutions of quaternionic linear equations. Because of noncommutativity of quaternions, solving quaternionic linear equations is more difficult. In papers [4], [5], [6], by means of a complex representation and a companion vector, the authors have studied quaternionic linear equations and presented a Cramer rule for quaternionic linear equations and an algebraic algorithm for the least squares problem, respectively, in quaternionic quantum theory. In the paper [8], by means of a real representation of the quaternionic matrix, we gave an iterative algorithms for the least squares problem in quaternionic quantum theory.

How to find positive (semi) definite solution of quaternionic matrix equations is also an important problem in quaternionic quantum theory, However, to our best knowledge, the problem has not been studied for its difficulty.

In this paper, we will pay attention to positive (semi) definite solutions of quaternionic matrix equations by means of a real representation of the quaternionic matrix and establish the relation between this problem and the corresponding problem in the real number field. Because the latter has been studied wildly, we may apply the existing results to the former.

Let \(\mathbf{R} \) denote the real number field, \(\mathbf{Q} = \mathbf{R} \oplus \mathbf{R} i \oplus \mathbf{R} j \oplus \mathbf{R} k \) the quaternion field, where \(i^2 = j^2 = k^2 = -1, ij = -ji = k \). For any quaternion \(a = a_1 + a_2 i + a_3 j + a_4 k \) where \(a_j \in \mathbf{R} \), the conjugate of \(a \) is \(\bar{a} = a_1 - a_2 i - a_3 j - a_4 k \). For any quaternion matrix \(A, A^T, A \) and \(A^H \) denote the transpose, conjugate and conjugate transpose of \(A \) over quaternion field, respectively. \(\mathbf{F}^{m \times n} \) denotes the set of \(m \times n \) matrices on a field \(F \). For \(A \in \mathbf{Q}^{m \times n} \), \(A \) is unitary if \(A^H A = AA^H = \mathbf{I} \) and Hermitian if \(A^H = A \). For any Hermitian matrix \(A \in \mathbf{Q}^{m \times n} \), \(A \) is positive (semi) definite if \(x^H A x > 0 (\geq 0) \) for any nonzero vector \(x \in \mathbf{Q}^n \).

II. REAL REPRESENTATION

In this section, we will give the definition of the real representation and study the relation between the positive (semi) definite quaternionic matrix and its real representation matrix.

Let \(A \in \mathbf{R}^{m \times n} (i = 1, 2, 3, 4) \). The real representation matrix is defined [7] in the form

\[
A^R = \begin{pmatrix}
A_{11} & -A_{21} & -A_{31} & -A_{41} \\
A_{21} & A_{11} & -A_{23} & A_{31} \\
A_{31} & A_{13} & A_{11} & -A_{32} \\
A_{41} & -A_{31} & A_{21} & A_{11}
\end{pmatrix} \in \mathbf{R}^{4m \times 4n}.
\]

The real matrix \(A^R \) is uniquely determined by quaternion matrix \(A = A_1 + A_2 i + A_3 j + A_4 k \in \mathbf{Q}^{m \times n} \), and it is said to be a real representation matrix of quaternion matrix \(A \).

Let \(I_t \) be \(t \times t \) identity matrix and define

\[
P_t = \begin{pmatrix}
I_t & 0 & 0 & 0 \\
0 & -I_t & 0 & 0 \\
0 & 0 & 0 & -I_t \\
0 & 0 & -I_t & 0
\end{pmatrix},
\]

\[
Q_t = \begin{pmatrix}
0 & -I_t & 0 & 0 \\
I_t & 0 & 0 & 0 \\
0 & 0 & 0 & -I_t \\
0 & 0 & I_t & 0
\end{pmatrix},
\]

\[
S_t = \begin{pmatrix}
0 & 0 & 0 & -I_t \\
0 & 0 & I_t & 0 \\
I_t & 0 & 0 & 0 \\
0 & -I_t & 0 & 0
\end{pmatrix},
\]

\[
R_t = \begin{pmatrix}
0 & 0 & -I_t & 0 \\
0 & 0 & 0 & I_t \\
0 & I_t & 0 & 0 \\
I_t & 0 & 0 & 0
\end{pmatrix}.
\]

Then it is easy verify the following properties.

Proposition 2.1. Let \(A, B \in \mathbf{Q}^{m \times n}, C \in \mathbf{Q}^{n \times s}, \alpha \in \mathbf{R} \). Then

(a) \((A + B)^R = A^R + B^R, (\alpha A)^R = \alpha A^R \),

(b) \(Q_m^T R_m^T = R_m^T S_m^T = -I_{4m}, Q_m^T = -Q_m\),

(c) \(R_m Q_m = S_m^T, S_m Q_m = R_m^T, R_m S_m = Q_m^T\),

(d) \(Q_m^T R_m = S_m^T, S_m Q_m = R_m^T, R_m S_m = Q_m^T\),

(e) \(Q_m^T A^R Q_m = Q_m A^R Q_m^T = A^R, R_m^T A^R R_m = R_m A^R R_m^T = A^R, S_m^T A^R S_m = S_m A^R S_m^T = A^R\).
Theorem 2.4. For any matrix $Y \in \mathbb{R}^{4n \times 4n}$, Y is a real representation matrix if and only if

$$Q^T_m Y Q_n = R^T_m Y R_n = S^T_m Y S_n = Y.$$

Proof. Necessity. It is obvious in terms of (e) in proposition 2.1.

Sufficiency. Let

$$\tilde{Y} = (Y + Q^T_m Y Q_n + R^T_m Y R_n + S^T_m Y S_n)/4.$$

Then $\tilde{Y} = Y$. Partition Y as $Y = (Y_{ij})_{4 \times 4}$, where Y_{ij}s are $m \times n$ matrices. By direct computation, we have

$$\tilde{Y} = Y = \begin{pmatrix}
\tilde{Y}_{11} & -\tilde{Y}_{12} & -\tilde{Y}_{13} & -\tilde{Y}_{14} \\
\tilde{Y}_{21} & \tilde{Y}_{22} & -\tilde{Y}_{23} & -\tilde{Y}_{24} \\
\tilde{Y}_{31} & \tilde{Y}_{32} & \tilde{Y}_{33} & -\tilde{Y}_{34} \\
\tilde{Y}_{41} & \tilde{Y}_{42} & \tilde{Y}_{43} & \tilde{Y}_{44}
\end{pmatrix},$$

where

$$\tilde{Y}_{11} = (Y_{11} + Y_{22} + Y_{33} + Y_{44})/4,$$
$$\tilde{Y}_{21} = (Y_{21} - Y_{12} + Y_{34} - Y_{43})/4,$$
$$\tilde{Y}_{31} = (Y_{24} + Y_{13} - Y_{42} - Y_{31})/4,$$
$$\tilde{Y}_{41} = (Y_{32} + Y_{41} - Y_{23} - Y_{14})/4.$$

So Y is the real representation matrix of quaternionic matrix $\tilde{Y}_{11} + \tilde{Y}_{22} + \tilde{Y}_{33} + \tilde{Y}_{44}$.

The following result may be verified directly.

Corollary 2.7. Let $A \in \mathbb{Q}^{n \times n}$ be Hermitian. Then A is positive (semi)definite if and only if A^R is positive (semi)definite.

Corollary 2.8. Let $A, B \in \mathbb{Q}^{n \times n}$ be Hermitian. Then $A - B$ is positive (semi)definite if and only if $A^R - B^R$ is positive (semi)definite.

Theorem 2.9. Let $A \in \mathbb{R}^{4n \times 4n}$ be symmetric. Then A is positive (semi)definite if and only if $A + Q^T_n A Q_n + S^T_n A S_n + R^T_n A R_n$ is positive (semi)definite.

Proof. The necessity is obvious. Now, we prove the sufficiency. For any $x \in \mathbb{R}^{4n}$, $(I, Q^T_n, R^T_n, S^T_n)^T$ is full column rank, and therefore there exists $y \in \mathbb{R}^{4n}$ such that

$$\begin{pmatrix} I \\ Q_n \\ R_n \\ S_n \end{pmatrix} y = \begin{pmatrix} x \\ x \\ x \\ x \end{pmatrix}.$$

Due to $(0 \leq 0) < y^T (A + Q^T_n A Q_n + S^T_n A S_n + R^T_n A R_n) y = y^T (I, Q^T_n, R^T_n, S^T_n)^T A (I, Q_n, R_n, S_n) y = 4 x^T A x > 0(\geq 0)$, i.e., $A > 0(\geq 0)$.

III. Positive semidefinite solutions of quaternionic matrix equation

In this section, we discuss the relation between the positive (semi)definite solutions of quaternionic matrix equation

$$AXA^H = B$$

(6) and those of real matrix equation

$$A^R U (A^R)^T = B^R,$$

(7) where $A \in \mathbb{Q}^{n \times m}, B \in \mathbb{H}^{l \times m}$.

First, we give the relation between the general solutions of quaternionic matrix equation

$$AXC = E$$

(8)
and those of real matrix equation
\[A^R Uran (C^R) = E^R, \]
where \(A \in Q^{m \times n}, C \in Q^{p \times q}, E \in Q^{m \times q} \). The following result is a special case of the corresponding result of [7].

Lemma 3.1. Quaternionic matrix equation (8) has a solution \(X \in Q^{n \times p} \) if and only if real matrix equation (9) has a solution \(U \in Q^{m \times p} \), in which case,
\[
X = \frac{1}{16} \left(I_n, iI_n, jI_n, kI_n \right) \left(U + Q^T U Q_p \right)
\]
\[+ R^T_p U R_p + S^T Q S_p \left(\begin{array}{cccc}
I_p & -iI_p & -jI_p & -kI_p \\
-iI_p & -I_p & -kI_p & jI_p \\
-jI_p & -kI_p & -I_p & iI_p \\
-kI_p & jI_p & iI_p & -I_p
\end{array} \right), \]
is a quaternionic matrix solution of (8). Furthermore, if (9) has an unique solution, then (8) has also an unique solution.

Theorem 3.2. Given \(A \in Q^{m \times n} \), \(B \in HQ^{n \times m} \). Then
1. (6) has a positive (semi)definite solution if and only if real matrix equation (7) has a positive (semi)definite solution.
2. When (6) has a positive (semi)definite solution, the general expression of this solution is
\[
X = \frac{1}{16} \left(I_n, iI_n, jI_n, kI_n \right) \left(U + Q^T U Q_p \right)
\]
\[+ R^T_p U R_p + S^T Q S_p \left(\begin{array}{cccc}
I_p & -iI_p & -jI_p & -kI_p \\
-iI_p & -I_p & -kI_p & jI_p \\
-jI_p & -kI_p & -I_p & iI_p \\
-kI_p & jI_p & iI_p & -I_p
\end{array} \right), \]
where \(U \) is a positive (semi)definite solution of (7). Furthermore, if \(U \) is the maximal (minimal) solution of (7), then the corresponding solution \(X \) is also the maximal (minimal) solution of (6).

Proof. If (7) has a positive (semi)definite solution \(U \), then from Theorem 2.9 and Theorem 3.1, we know that
\[
U \equiv \frac{1}{4} \left(I_n, iI_n, jI_n, kI_n \right) \left(U + Q^T U Q_p \right)
\]
is also a positive (semi)definite solution of (7). Let \(\hat{U} \) be the real representation matrix of quaternionic matrix \(X \). It follows from Corollary 2.7 that \(X \) is a positive (semi)definite solution of (6).

If \(U_1 \) and \(U_2 \) are positive (semi)definite solutions of (7) satisfying \(U_1 \geq U_2 \), then
\[
\frac{1}{4} \left(U_1 + Q^T U_1 Q + S^T U_1 S + R^T U_1 R \right) \geq \frac{1}{4} \left(U_2 + Q^T U_2 Q + S^T U_2 S + R^T U_2 R \right),
\]
and both are positive (semi)definite solutions of (7). Let them be the real representation matrices of quaternionic matrices \(X_1 \) and \(X_2 \), respectively. Then from Corollary 2.8, we have \(X_1 \) and \(X_2 \) are positive (semi)definite solutions of (6) satisfying \(X_1 \geq X_2 \).

Theorem 3.2 establishes the relation between positive (semi)definite solutions of quaternionic matrix equations (6) and those of corresponding real matrix equations (7). For the latter, there have been many good theoretical results and numerical methods, which may be applied to the former.

IV. Conclusion

In the paper, we only take a simple but common equation (6) as an example. Our idea is applied to more complicated linear quaternionic matrix equations.

REFERENCES

