Extractability of Heavy Metals in Green Liquor Dregs using Artificial Sweat and Gastric Fluids

Kati Manskinen, Risto Pöykiö, and Hannu Nurmesniemi

Abstract—In an assessment of the extractability of metals in green liquor dregs from the chemical recovery circuit of semi-chemical pulp mill, extractable concentrations of heavy metals in artificial gastric fluid were between 10 (Ni) and 717 (Zn) times higher than those in artificial sweat fluid. Only Al (6.7 mg/kg; d.w.) and Zn (1.8 mg/kg; d.w.) showed extractability in the artificial sweat fluid, whereas Al (730 mg/kg; d.w.), Ba (770 mg/kg; d.w.) and Zn (1290 mg/kg; d.w.) showed clear extractability in the artificial gastric fluid. As certain heavy metals were clearly soluble in the artificial gastric fluid, the careful handling of this residue is recommended in order to prevent the penetration of green liquor dregs across the human gastrointestinal tract.

Keywords—Dregs, non-process elements, pulping, waste.

I. INTRODUCTION

Wood is converted into pulp by mechanical, chemical or semi-chemical pulping processes. The aim of these processes is to dissolve lignin and to free the wood fibres from the wood matrix, e.g. from the cellulosic fibres. Mechanical pulping does not involve a chemical process. In the mechanical pulping process, the pulp is produced by mechanically grinding the wood into pulp, and the liquids handled in pulping are simply water and pulps. Chemical pulping is nowadays dominated by the sulphate (kraft) process, following by the sulphite process. The sulphate (kraft) pulping process is an alkaline process based on the use of sodium hydroxide (NaOH) and sodium sulphide (Na2S), whereas in the sulphite process, the active cooking chemical is hydrogen sulphite (HSO3−) [1]. Semi-chemical pulping is generally defined as a two-stage pulping process, involving chemical treatment to remove part of the lignin or fibre-bonding substances followed by mechanical refining to complete the separation of the fibres [2]. Semi-chemical pulp can be produced by modifying nearly any presently used pulping procedure: sulphate, sulphite, soda or cold caustic.

Cooking chemicals used in pulping are recovered in the chemical recovery unit, which is used to recover valuable inorganic chemicals used in the cooking liquor. The accumulation of non-process elements (NPEs) in pulping processes may result in scaling problems and filtration failures [3]. Therefore, non-process elements (i.e. heavy metals) have to be taken out of the process for instance by precipitation in the form of green liquor dregs.

In-vitro methods involving artificial sweat and gastric fluids have been used in many environmental studies for the determination of extractable heavy metals in a range of industrial wastes such as coal fly ash [4]-[5], chromite ore processing residue [6], chromate copper arsenate-treated wood [7], as well as in contaminated urban roadside and industrial soils [7]-[8]. In terms of human health risk assessment, there are three main exposure pathways for the heavy metals present in these residues. The main area of concern is the oral/ingestion pathway followed by the dermal and respiratory exposure routes [9]-[10]. This study is part of a major project in which the extractability of heavy metals in industrial residues is being investigated using artificial sweat and gastric fluids [11].

II. EXPERIMENTAL

A. Sampling

The green liquor dregs investigated in this study originated from the pulp mill of a semi-chemical fluting mill located in Finland. The sampling of the green liquor dregs was carried out over a period of one week, with individual daily samples being combined to give one composite sample with a weight of 10 kg (wet weight). A comprehensive review of the pulping process and the sampling procedure is given in our previous paper [12].

B. Determination of the mineral composition, physical and chemical properties of the dregs

For the determination of the mineralogical composition of the green liquor dregs, X-ray diffractogram of powdered sample was obtained with a Siemens D 5000 diffractometer (Siemens AG, Karlsruhe, Germany) using CuKa radiation. The scan was run from 2 to 80° (2-theta-scale), with increments of 0.02° and a counting time of 1.0 seconds per step. Operating conditions were 40 kV and 40 mA. Peak identification was done with the DIFFRACplus BASIC Evaluation Package PDFMaint 12 (Bruker axs, Germany) and ICDD PDF-2 Release 2006 software package (Pennsylvania, USA).

The pH and electrical conductivity (EC) of the dregs were determined by a pH/EC analyser equipped with a Thermo
For the determination of total element concentrations in the green liquor dregs, the dried sample was digested with a mixture of HCl (3 mL) and HNO₃ (9 mL) in a CEM Mars 5 microwave oven (CEM corp., Matthews, USA) using USEPA method 3051A [14]. The cooled solution was transferred to a 100 mL volumetric flask and the solution was diluted to volume with ultrapure water. The ultrapure water was generated by an Elgastat Prima reverse osmosis and Elgastat Maxima ion exchange water purification system (Elga, Ltd; Bucks, England). All reagents and acids were suprapure or pro analysis quality. The total element concentrations in the dregs were determined with a Thermo Fisher Scientific iCAP6500 inductively coupled plasma optical emission spectrometer (ICP-OES).

D. Procedure for determining the extractability of heavy metals in dregs by use of artificial sweat and gastric fluids

The artificial sweat was prepared by dissolving 5 g NaCl, 1 g lactic acid and 1 g urea in 1 L of deionized water and adjusting the pH to a value of 6.47 with ammonia [15]. The artificial gastric fluid was prepared by dissolving 60.06 g glycine in 2 L of deionized water and adjusting the pH to a value of 1.51 with HCl [8].

Extraction was carried out in polypropylene bottles by shaking 1 g of dregs on a dry weight (d.w.) basis with 100 mL of the extract (i.e. artificial sweat or artificial gastric fluid) for 1 hour by end-over-end mixing at 37 °C. Thus, the liquid-to-solid ratio (L/S 100 L/kg) in our procedure was the same as those in the procedures of Wang et al. [8] and Kim et al. [16]. In order to minimise possible chemical and/or microbiological changes in the material, the extraction was carried out using an undried sample instead of a dried sample [11]. After extraction, the extract was separated from the solid residue (i.e. the undissolved dregs) by filtration through a 0.45 µm membrane filter. The pH of the extract was then measured, and the metal concentrations were determined with an ICP-OES. For the determination of total element concentrations in the green liquor dregs, the dried sample was decomposed with a mixture of HCl (3 mL) and HNO₃ (9 mL) in a microwave oven using USEPA method 3051A [14].

Abbreviations for minerals and their relative proportions (%) in green liquor dregs: Ba = Barentsite [Na₇AlH₂(CO₃)₄F₄]; 5.8-%%; CC = Calcite [CaCO₃]; 3.1-%%; Pir = Pirssonite [Na₇Ca(CO₃)₂-2H₂O; 91.1-%%].

Fig. 1 XRD data of the green liquor dregs

B. Total and extractable heavy metal concentrations in green liquor dregs

According to the results in Table 1, the extractable concentrations of many heavy metals in artificial gastric fluid were clearly higher than those in artificial sweat fluid. This is probably why crystalline compounds containing all the non-process elements (i.e. heavy metals) in Table 2 were not identified by XRD, despite the fact that the concentrations of these elements could be measured quantitatively by ICP-OES.
that the pH of the green liquor dregs was strongly alkaline (pH 11.7), the dry matter content was 80.8-8% and the electrical conductivity 23.7 mS/cm. The most important physical and chemical properties of the green liquor dregs are presented elsewhere [12].

If we disregard the heavy metals whose concentrations were lower than the detection limits, the extractable concentrations of heavy metals in the artificial gastric fluid were between 10 (Ni) and 717 (Zn) times higher than those in the artificial sweat fluid. However, only Al (6.7 mg/kg; d.w.), Ni (1.2 mg/kg; d.w.) and Zn (1.8 mg/kg; d.w.) showed extractability in the artificial sweat fluid (i.e. extractability higher than the limit of detection), whereas Al (730 mg/kg; d.w.), Ba (770 mg/kg; d.w.) and Zn (1290 mg/kg; d.w.) showed clear extractability in the artificial gastric fluid. The extractability of Cd (2.1 mg/kg; d.w.) was slight, and the extractability of Co (6.2 mg/kg; d.w.), Cu (11.4 mg/kg; d.w.), Ni (12.0 mg/kg; d.w.), and Pb (10.3 mg/kg; d.w.) was moderate in the artificial gastric fluid.

<table>
<thead>
<tr>
<th>pH (before)</th>
<th>Total concentration in green liquor dregs (mg/kg; d.w.)</th>
<th>Extractable concentration in artificial sweat fluid (mg/kg; d.w.)</th>
<th>Extractable concentration in artificial gastric fluid (mg/kg; d.w.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (after)</td>
<td>6.48 1.53</td>
<td>10.3 2.30</td>
<td>730</td>
</tr>
<tr>
<td>Al</td>
<td>820 6.7</td>
<td>10.3 2.30</td>
<td>730</td>
</tr>
<tr>
<td>As</td>
<td>< 3.0 < 1.5</td>
<td>< 1.0 < 1.0</td>
<td>< 1.0 < 1.0</td>
</tr>
<tr>
<td>Ba</td>
<td>910 < 1.0</td>
<td>770</td>
<td>770</td>
</tr>
<tr>
<td>Be</td>
<td>< 1.0 < 0.5</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Cd</td>
<td>3.8 < 0.15</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Co</td>
<td>8.0 < 0.5</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Cr</td>
<td>14.0 < 1.0</td>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Cu</td>
<td>61.0 < 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Ni</td>
<td>14.0 1.2</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Pb</td>
<td>13.0 < 1.5</td>
<td>10.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Sb</td>
<td>< 4.0 < 2.0</td>
<td>< 2.0</td>
<td>< 2.0</td>
</tr>
<tr>
<td>Se</td>
<td>< 4.0 < 2.0</td>
<td>< 2.0</td>
<td>< 2.0</td>
</tr>
<tr>
<td>V</td>
<td>< 50.0 < 1.0</td>
<td>< 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Zn</td>
<td>1320 1.8</td>
<td>1290</td>
<td>1290</td>
</tr>
</tbody>
</table>

According to the extraction recovery (R) values (%), which were determined as the ratio of the metal concentration extractable by the artificial sweat and gastric fluids to the total metal concentration in the dregs, the extractable recoveries for the metals varied between 0.1-3% (Zn) and 8.6-9% (Ni) in the artificial sweat fluid and between 55.2-9% (Cd) and 97.7% (Zn) in the artificial gastric fluid.

Green liquor dregs are reported to be a potential material for use in the surface structure of landfill sites. However, due to the alkaline nature of the dregs (pH 11.7), dermal contact with this residue should be avoided. Furthermore, since many of the heavy metals in green liquor dregs are reported to have harmful properties [19], we conclude that, in terms of human health risk assessment, careful handling of this residue is recommended, especially if it causes dusting. Furthermore, it is advantageous to be aware that ingestion of this and other industrial by-products and recycled materials, which can occur through inadvertent wiping of the mouth with dirty hands or though the inhalation of particles, is necessary to avoid [20].

Although certain heavy metals in the green liquor dregs were extractable by artificial and gastric fluids, this does not necessarily mean that humans at landfill sites or earthwork will be exposed to the heavy metals in green liquor dregs during their handling. However, it is advantageous to be aware of the potential occupational risk aspects associated with the handling of green liquor dregs. In-vitro tests using artificial sweat and gastric fluids have been reported to have limitations, for instance because they cannot contain all the constituents of human fluids (e.g. proteins, enzymes, etc.). However, they provide a rapid and inexpensive means to determine the bioaccessibility of heavy metals in wastes and other materials. Therefore, they are relatively widely used for assessing occupational risk and safety aspects of material handling and use [21]-[23]. As the assessment of human health risks associated with industrial residue handling is a complex issue, we are continuing to study the matter in our laboratory.

ACKNOWLEDGMENT

The authors wish to thank the technical staff of Suomen Ympäristöpalvelu Oy, who performed all the chemical analyses. Special thanks also Dr Roy Siddall for correcting the English language and to Olli Taikima-Aho at the Institute of Electron Optics of University of Oulu for the XRD data.

REFERENCES

