The Balanced Hamiltonian Cycle on the Toroidal Mesh Graphs

Wen-Fang Peng, Justie Su-Tzu Juan

Abstract—The balanced Hamiltonian cycle problem is a quiet new topic of graph theory. Given a graph \(G = (V, E) \), whose edge set can be partitioned into \(k \) dimensions, for positive integer \(k \) and a Hamiltonian cycle \(C \) on \(G \). The set of all \(i \)-dimensional edge of \(C \), which is a subset by \(E(C) \), is denoted as \(E_i(C) \). If \(\| E_i(C) \| - | E_i(C) \| \leq 1 \) for \(1 \leq i \leq k \), \(C \) is called a balanced Hamiltonian cycle. In this paper, the proposed result shows that there exists a balanced Hamiltonian cycle for any Toroidal Mesh graph \(T_{m,n} \), if and only if \(n, m \geq 3 \) and Toroidal Mesh graph \(nm \neq 2 \) (mod 4), and how to find a balanced Hamiltonian cycle on \(T_{m,n} \) for \(n, m \geq 3 \) and \(nm \neq 2 \) (mod 4).

Keywords—Hamiltonian cycle; balanced; Cartesian product

I. INTRODUCTION

The research of optimal encode uses gray-code encode to signify the information of n-bit about the application of 3D scanning, which has been mentioned in the references [1], [2], [3], [5] and [8]. The utility of gray-code will decrease the consumption of resource and increase the precision. Nevertheless, there would be some problem when deal with those information of transforming between 0 and 1, such as it will spend much more cost in identification. How to decrease the cost in dealing with such problems is important. Hence, in this paper, it discusses a method to decrease the number of transformation between 0 and 1 in the same dimension.

Balanced Hamiltonian cycle (BHC) problems are widely discussed in recent years. Several issues about BHC have been proposed by other researchers [2]. Wang et al proposed the BHC on \(C_m \times C_n \) for any positive integer \(n \geq 3 \). This paper propose an extended research about the BHC on \(C_m \times C_n \), also called \(T_{m,n} \), for any positive integer \(m \geq 3, n \geq 3 \).

Next section introduces some background knowledge about the Hamiltonian cycle (HC) problem, Cartesian product, and some related definitions. Section 3 describes the main results, the research about the BHC problem on \(T_{m,n} \), for \(m, n \geq 3 \), proposed by this paper. Finally, the last section makes a conclusion and lists the future work.

II. DEFINITION AND NOTATION

This paper denotes the symbols below by referring to [4], [6], [7] and [9]. Define a walk \(W \), which is in a graph \(G = (V, E) \), is a sequence \(w = x_1e_1x_2e_2...x_ne_n \) for \(x_i, x_2, ..., x_n, y \in V(G) \) and \(e_1, e_2, ..., e_n \in E(G) \). And let \(x \) be the origin vertex of \(W \), \(y \) be the terminus vertex of \(W \). If all of vertices in this walk are different, a walk \(W \) is denoted a path. When the origin vertex and the terminus vertex are the same vertex, then this path is denoted a cycle.

A Hamiltonian path of graph \(G = (V, E) \) is a path that contains all vertices. A Hamiltonian cycle of \(G \) is a cycle that contains all vertices.

Given a Hamiltonian cycle \(C \) on a graph \(G = (V, E) \), whose edge set can be partitioned into \(k \) dimensions, for positive integer \(k \). And let \(E_i(C) \) represents the set of all \(i \)-dimensional edge of \(C \) which is a subset by \(E(C) \). If \(\| E_i(C) \| - | E_i(C) \| \leq 1 \) for \(1 \leq i \leq k \), \(C \) is called a balanced Hamiltonian cycle.

Let \(C_n \) denote a cycle with \(n \) vertices, given two graph \(G_1, G_2 \), the Cartesian product \(G_1 \times G_2 \) of \(G_1 \) and \(G_2 \) is a graph with vertex set \(V(G_1 \times G_2) = \{ (x, y) | (x \in V(G_1), y \in V(G_2)) \} \) and the edge set \(\{(u, v), (u', v') | u = u' \in V(G_1) \text{ and } (v, v') \in E(G_2) \text{ or } v = v' \in V(G_2) \text{ and } (u, u') \in E(G_1)\} \). The toroidal mesh graph \(T_{m,n} \) is the graph \(C_m \times C_n \).

The dimension of \(T_{m,n} \) is 2. Given an Hamiltonian cycle \(C \) of \(T_{m,n} \), let \(E_1(C) = \{ (x_i, y) | 1 \leq i \leq m \text{ and } 1 \leq j \leq n \} \) and \(E_2(C) = \{ (x_i, y) | 1 \leq i \leq m \text{ and } 1 \leq j \leq n \} \) mean the 1-dimension edge set and 2-dimension edge set of a Hamiltonian cycle \(C \), respectively. Thus, the relation between vertex number and edge number of Hamiltonian cycle \(C \) is \(| V(C) | = | V(C_m \times C_n) | = \| E_1(C) \| + \| E_2(C) \| = mn \). If \(C \) satisfied that \(\| E_1(C) \| - \| E_2(C) \| \leq 1 \), it presents that \(C \) is balanced.

In this paper, when we draw a figure of \(T_{m,n} \), \(m \) is denoted the number of vertices on x-axis, and \(n \) is the number of vertices on y-axis, respectively. Besides, for any vertices \((x, y) \) of \(T_{m,n} \), \(x \) is called the 1st-dimension and \(y \) is called the 2nd-dimension.

Furthermore, we define the lower-left vertex of \(T_{m,n} \) to be the origin vertex and set it as \((1, 1)\). Fig. 1 shows an example of \(T_{3,4} \).

![Fig. 1 T_{3,4}](image)

The next section discusses the methods for getting the balanced Hamiltonian cycle on \(T_{m,n} \) for \(n, m \geq 3 \).

III. MAIN RESULTS

This section gives theorems for prove \(\# \), and gives some cases to prove Theorem 3 that there exists a BHC on \(T_{m,n} \) for positive integers \(n, m \geq 3 \), except for the situation on \(mn \mod 4 = 2 \).

Theorem 1: For \(mn \mod 4 = 2 \), there is no any balanced Hamiltonian cycle \(C \) exists on \(T_{m,n} \).

Proof.

When \(mn \mod 4 = 2 \), one of the following case will hold. (i) \(n \)
mod 4 = 2 and m is odd; (ii) m mod 4 = 2 and n is odd. Without loss of generality, we say n mod 4 = 2 and m is odd. Furthermore, let \(n = 4k_1 + 2 \) and \(m = 2k_2 + 1 \) for some positive \(k_1 \) and \(k_2 \). Assume that there exists a balanced Hamiltonian cycle \(C \) on \(T_{m,n} \). Since \(V(C) = mn = (4k_1 + 2)(2k_2 + 1) = 8k_1k_2 + 4k_2 + 4k_1 + 2 = 2(2k_1k_2 + k_1 + k_2) + 1 \) is an odd integer.

We call a vertex \(u \) in \(V(C) \) is black if \(u \in \{ (x, y) \mid 1 \leq x \leq m, 1 \leq y \leq n \ \text{and} \ y \ \text{is odd} \} \); white if \(u \in \{ (x, y) \mid 1 \leq x \leq m, 1 \leq y \leq n \ \text{and} \ y \ \text{is even} \} \). Hence the origin vertex is black. After tracing all edges of \(C' \), find the terminate vertex of \(C' \) is white due to \(|E_2(C')| \) is odd. Obviously, the origin vertex and the terminate vertex of \(C' \) are different. That is a contradiction. So, there is no BHC on \(T_{m,n} \) when \(mn \mod 4 = 2 \).

Lemma 2: For \(n = 3, m \geq 3 \) and \(m \) is odd, there is a balanced Hamiltonian cycle on \(T_{m,n} \).

Proof.

The proof is divided into two cases. Case 1 discusses the condition on \(m \mod 4 = 1 \) and \(n = 3 \); Case 2 discusses the state on \(m \mod 4 = 3 \) and \(n = 3 \).

Case 1. \(m \mod 4 = 1 \) and \(n = 3 \)

In this section, \(T_{m,3} \) consists of the BHC on \(T_{3,3} \) and the BHC on \(T_{3,n} \), as shown in Fig. 2 and Fig. 3, respectively. Besides, Fig. 4 indicates how to connect all figures. First of all, let \(x = (m - 5) / 4 \), and inset Fig. 2 for \(x \) times on right side of Fig. 3 when \(m > 5 \) and \(n = 3 \). Then, delete edge set \(E_1 = \{ (6 + 4i, 3)(9 + 4i, 3) 10 \leq i \leq (m - 9) / 4 \} \cup (1, 3)(5, 3) \), and add edge set \(E_2 = \{ (5 + 4i, 3)(6 + 4i, 3) 10 \leq i \leq (m - 9) / 4 \} \cup (1, 3)(m, 3) \). After these steps, a Hamiltonian cycle \(C \) on \(T_{m,3} \) is generated, whose \(|E_1(C)| = 7 + 6x \) and \(|E_2(C)| = 8 + 6x \). Consequently, \(|E_1(C)| - |E_2(C)| = 1 \). C satisfies the definition of BHC.

Case 2. \(m \mod 4 = 3 \) and \(n = 3 \)

Compare Fig. 4 with Fig. 6, which indicates how to construct the BHC on \(T_{m,3} \), there is only one difference at the beginning. As a result, refer to Case 3.1, replace Fig. 3 with Fig. 5, which is one of possible BHCs on \(T_{m,3} \), and revise \(x = (m - 3) / 4 \). Then correct the edge set \(E_1 = \{ (5 + 4i, 3)(4 + 4i, 3) 10 \leq i \leq (m - 7) / 4 \} \cup (1, 3)(3, 3) \) and \(E_2 = \{ (3 + 4i, 3)(4 + 4i, 3) 10 \leq i \leq (m - 7) / 4 \} \cup (1, 3)(m, 3) \), respectively. In the end, a Hamiltonian cycle \(C \) on \(T_{m,3} \) is built, which \(|E_1(C)| = 5 + 6x \) and \(|E_2(C)| = 4 + 6x \). Obviously, \(C \) satisfies the definition of BHC as a result of \(|E_1(C)| - |E_2(C)| = 1 \).

Theorem 3: For \(n, m \geq 3 \), there is a balanced Hamiltonian cycle on \(T_{m,n} \) except for the state on \(mn \mod 4 = 2 \).

Proof.

According to the condition of even or odd on \(n, m \), the proof is divided into three cases. Case 1 proposes the condition on \(m, n \) both are even; Case 2 proposes the condition one of \(m, n \) is even and the other is odd; Case 3 discusses the condition on \(n, m \) both are odd.

Case 1. \(n, m \) both are even

This case is separated into three subcases for discussion. Case 1.1, Case 1.2 and Case 1.3 consider the states on \(n, m \) is even and \(n \mod 4 = 0, m \mod 4 = 0 \) and \(n \mod 4 = 2, m \mod 4 = 2 \) and \(n \mod 4 = 2, m \mod 4 = 2 \), respectively.

Case 1.1. \(m \) is even and \(n \mod 4 = 0 \)

Fig. 7 and Fig. 8 show one of the possible HCs on \(T_{2,4} \) and one of the possible BHCs on \(T_{4,4} \), respectively. When \(m > 4 \) and
n = 4, let x = (m – 4) / 2, and then duplicate Fig. 7 for x times. Next, inset them on the right side of Fig. 8 mentioned above. Then delete edge set \(E_3 = \{(i, 2)(i, 3) | 4 \leq i \leq m - 1\} \), and insert edge set \(E_6 = \{(i, 2)(i + 1, 2) \cup (i, 3)(i + 1, 3) | 4 \leq i \leq m - 2 \) and \(i \) is even.\].

A Hamiltonian cycle \(C \) is produced, whose \(|E_3(C)| = 12 + 12x \) and \(|E_2(C)| = 12 + 12n \), as shown in Fig. 13. Because of \(|E_3(C)| - |E_2(C)| = 0 \), \(C \) satisfies the definition of BHC.

Case 1.2 \(m \) mod 4 = 2 and \(n \) mod 4 = 2

Fig. 11 and Fig. 12 are isomorphic BHC on \(T_{4,6} \). The following steps indirect how to find a BHC on \(T_{m,6} \) when \(m > 4 \). First, inset Fig. 12 on the right side of Fig. 11 for \(x \) times, where \(x = (m - 4) / 4 \). Second, delete edge set \(E_9 = \{(1 + 4i)(4 + 4i, 6) | 10 \leq i \leq x\} \). Third, add edge set \(E_{10} = \{(4 + 4i)(5 + 4i, 6) | 10 \leq i \leq (n - 8) / 4\} \). By implementing these steps above, a Hamiltonian cycle \(C \) is produced, whose \(|E_9(C)| = 12 + 12x \) and \(|E_2(C)| = 12 + 12n \), as shown in Fig. 13. Because of \(|E_9(C)| - |E_2(C)| = 0 \), \(C \) satisfies the definition of BHC.

Case 1.3 \(m \) mod 4 = 2 and \(n \) mod 4 = 2

Fig. 14 shows a BHC on \(T_{6,6} \) which can be used to build a BHC on \(T_{m,6} \). Consider \(m > 6 \), make \(x = (m - 6) / 4 \). Use Fig. 14 as the beginning, and inset Fig. 12 on the right side for \(x \) times. After that, remove edge set \(E_{13} = \{(7 + 4i, 6)| 10 \leq i \leq (m - 10) / 4\} \cup (1, 6)(6, 6) \), and add edge set \(E_{14} = \{(1, 6)(6 + 4i, 6)(7 + 4i, 6) | 10 \leq i \leq (m - 10) / 4\} \cup (1, 6)(m, 6) \). Finally, a Hamiltonian cycle \(C \) on \(T_{m,6} \) is built as shown in Fig. 15, whose \(|E_9(C)| = 18 + 12x \) and \(|E_2(C)| = 18 + 12n \). Obviously, \(C \) satisfies the definition of BHC owing to \(|E_9(C)| - |E_2(C)| = 0 \).

When \(n > 6 \), the way of constructing the BHC on \(T_{m,n} \) is similar to Case 1.2. Only difference is to replace Fig. 13 with Fig. 15, else parts are the same.
Case 2. One of m, n is even, and the other is odd

For any positive integer n, m, $T_{m,n}$ and $T_{n,m}$ are isomorphic.

Hence, if one of m, n is even, and the other is odd, without loss of generality, set that n is even and m is odd.

This case can be also divided into two subcases for discussion. Case 2.1 discusses the condition on m is odd and $n \mod 4 = 0$; Case 2.2 discusses the state on m is odd and $n \mod 4 = 2$.

Case 2.1. m is odd and $n \mod 4 = 0$

Fig. 16 shows a possible BHC on $T_{3,n}$. When $m > 3$, the BHC on $T_{m,n}$ consists of Fig. 7 and Fig. 16. Fig. 17 illustrates the way of connecting. First, for $x = (m-3)/4$, inset x duplicate BHC, which has been shown in Fig. 7, on the right side of Fig. 16. Second, eliminate edge set $E_{15} = \{(3, 3)(i, 3)(i, 4) | 14 \leq i \leq m \} \cup (1, 4)(3, 4) \cup (1, 3)$. Third, put edge set $E_{16} = \{(3 + 2i, 3)(4 + 2i, 3) \cup (3 + 2i, 4)(4 + 2i, 4) | 10 \leq i \leq (m-4)/2 \} \cup (1, 3)(m, 3) \cup (1, 4)(m, 4)$ on the graph produced by previous steps. After that, a Hamiltonian cycle is established, whose $|E(C)| = 6 + 4x$ and $|E_2(C)| = 6 + 4x$. Due to $|E_1(C)| - |E_2(C)| = 0$, C satisfies the definition of BHC.

Case 2.2: $n \mod 4 = 2$ and m is odd

According to theorem 1, there is no balanced Hamiltonian cycle on $T_{m,n}$ for m mod 4 is odd and n mod 4 is 2.

Case 3. m, n both are odd

This case is also separated into eight subcases for discussion. Case 3.1 discusses the state on $n \mod 4 = 1$ and m mod 8 = 1; Case 3.2 proposes the state on $n \mod 4 = 3$ and m mod 8 = 3; Case 3.3 considers the operations when $n \mod 4 = 1$ and m mod 8 = 5; Case 3.4 concerns the details when $n \mod 4 = 1$ and m mod 8 = 7.

The other four remaining cases propose the method under the condition of $n > 3$. Case 3.5 discusses the state on $n \mod 4 = 3$ and m mod 8 = 1; Case 3.6 considers the state on $n \mod 4 = 3$ and m mod 8 = 3; Case 3.7 concerns the operations when $n \mod 4 = 3$ and m mod 8 = 5; Case 3.8 details the cases when $n \mod 4 = 3$ and m mod 8 = 7.

Case 3.1. $m \mod 8 = 1$ and $n \mod 4 = 1$

Fig. 19 and Fig. 20 show one of the possible HCs on $T_{8,5}$ and one of possible BHCs on $T_{8,5}$, respectively. When $m > 9$ and $n = 5$, make $x = (m-9)/8$. First, use Fig. 20 as the beginning, and insert Fig. 19 for x times on its right side. Then eliminate edge set $E_{19} = \{(10 + 8i, 4)(10 + 8i, 5) \cup (17 + 8i, 4)(17 + 8i, 5) | 10 \leq i \leq (m-17)/8 \} \cup (1, 4)(9, 4) \cup (1, 5)(9, 5)$, and add edge set $E_{20} = \{(9 + 8i, 4)(10 + 8i, 4) \cup (9 + 8i, 5)(10 + 8i, 5) | 10 \leq i \leq (m-17)/8 \} \cup (1, 4)(m, 4) \cup (1, 5)(1, m)$. Finally, a Hamiltonian cycle C on $T_{m,n}$ is produced, which is shown in Fig. 21. For $|E_1(C)| = 22 + 18x = 22 + 20x$ and $|E_2(C)| = 23 + 20x$, C satisfies that $|E_1(C)| - |E_2(C)| = 1$. Undoubtedly, C is a BHC of $T_{m,n}$.

When $n > 5$, let $y = (n-5)/4$. Use Fig. 21 as base, then stack y BHCs, which is shown in Fig. 12. Next, remove edge set $E_{21} = \{(1, 6 + 4i)(1, 9 + 4i) | 10 \leq i \leq (n-9)/4 \} \cup (1, 1)(1, 5)$, and insert edge set $E_{22} = \{(1, 1)(1, n) | 10 \leq i \leq (n-9)/4 \} \cup (1, 5 + 4i)(1, 6 + 4i)$. After complete all of the steps, a BHC on $T_{m,n}$ for m mod 8 = 1 and n mod 4 = 1 is established.
Case 3.2. \(m \mod 8 = 3 \) and \(n \mod 4 = 1 \)

Fig. 23 represents the way of constructing a BHC on \(T_{m,5} \). When \(m > 5 \), let \(x = (m - 3) / 8 \), and then duplicate Fig. 19 for \(x \) times. Next, insert them on the right side of the BHC on \(T_{3,5} \), which is shown in Fig. 22. In order to connect every figure, delete edge set \(E_{23} = \{(4 + 8i, 4)(4 + 8i, 5) \cup (11 + 8i, 4)(11 + 8i, 5) : 10 \leq i \leq (m - 11) / 8 \} \cup \{(1, 4)(3, 4) \cup (1, 5)(3, 5), \} \), and add edge set \(E_{24} = \{(3 + 8i, 4)(4 + 8i, 4) \cup (3 + 8i, 5)(4 + 8i, 5) : 10 \leq i \leq (m - 11) / 8 \} \cup \{(1, 4)(m, 4) \cup (1, 5)(m, 5)\). By implementing the steps above, a Hamiltonian cycle \(C \) is generated, whose \(||E_1(C)|| = 8 + (18 + 2)x = 8 + 20x \) and \(||E_2(C)|| = 7 + 20x \). Due to \(||E_1(C)|| - ||E_2(C)|| = 1 \), \(C \) satisfies the definition of BHC.

Case 3.3. \(m \mod 8 = 5 \) and \(n \mod 4 = 1 \)

Fig. 24 represents a BHC on \(T_{5,5} \), which is used to construct the BHC on \(T_{m,5} \). When \(m > 5 \), let \(x = (m - 5) / 8 \). To begin with, insert Fig. 19 for \(x \) times on the right side of Fig. 24. Next, delete edge set \(E_{25} = \{(6 + 8i, 4)(6 + 8i, 5) \cup (13 + 8i, 4)(13 + 8i, 5) : 10 \leq i \leq (m - 13) / 8 \} \cup \{(1, 4)(5, 4) \cup (1, 5)(5, 5)\), and put edge set \(E_{26} = \{(5 + 8i, 4)(6 + 8i, 4) \cup (5 + 8i, 5)(6 + 8i, 5) : 10 \leq i \leq (m - 13) / 8 \} \cup \{(1, 4)(m, 4) \cup (1, 5)(m, 5)\). Thus, a Hamiltonian cycle \(C \) is established, which is shown in Fig. 24. For \(||E_1(C)|| = 12 + (18 + 2)x = 12 + 20x \) and \(||E_2(C)|| = 13 + 20x \), \(C \) obviously satisfies \(||E_1(C)|| - ||E_2(C)|| = 1 \) that make it be a BHC of \(T_{m,5} \) for \(m \mod 8 = 5 \) and \(n \mod 4 = 1 \).

Case 3.4. \(m \mod 8 = 7 \) and \(n \mod 4 = 1 \)

The following steps indirect how to construct a BHC on \(T_{m,5} \). A BHC on \(T_{5,5} \) is shown in Fig. 25. When \(m > 7 \), make \(x = (m - 7) / 8 \). Then use Fig. 25 as the beginning, and inset Fig. 19 for \(x \) times on the right side. In order to connect all figures, eliminate edge set \(E_{27} = \{(8 + 8i, 4)(8 + 8i, 5) \cup (15 + 8i, 4)(15 + 8i, 5) : 10 \leq i \leq (m - 15) / 8 \} \cup \{(1, 4)(7, 4) \cup (1, 5)(7, 5), \} \), and insert edge set \(E_{28} = \{(7 + 8i, 4)(8 + 8i, 4) \cup (7 + 8i, 5)(8 + 8i, 5) : 10 \leq i \leq (m - 15) / 8 \} \cup \{(1, 4)(m, 4) \cup (1, 5)(m, 5)\). Therefore, a Hamiltonian cycle \(C \) is built, which as shown in Fig. 26. For \(||E_1(C)|| = 18 + (18 + 2)x = 18 + 20x \) and \(||E_2(C)|| = 17 + 20x \), \(C \) satisfies \(||E_1(C)|| - ||E_2(C)|| = 1 \). Without a doubt, \(C \) is a BHC of \(T_{m,5} \) for \(m \mod 8 = 7 \) and \(n \mod 4 = 1 \).

When \(n > 5 \), the way of constructing the BHC on \(T_{m,5} \) is similar to Case 3.1. Only one difference is to replace Fig. 21 with Fig. 23.

Refer to Case 3.1 when \(n > 5 \). Replace Fig. 21 with Fig. 26, else parts are similar to Case 3.1. Finally, a BHC on \(T_{m,5} \) is produced.
Case 3.5. \(m \equiv 8 = 1 \) and \(n \equiv 4 = 3 \)

Fig. 27 and Fig. 28 show one of the possible HC s on \(T_{8,7} \) and one of possible BHC s on \(T_{m,7} \), respectively. Furthermore, Fig. 29 illustrates the way of constructing a BHC on \(T_{m,7} \), which is described in the content below. When \(m > 9 \), let \(x = \frac{(m - 9)}{8} \). First, inset \(x \) HC s, which has been mentioned above, on the right side of Fig. 28. Second, remove edge set \(E_{29} = \{(10 + 8i, 6)(10 + 8i, 7) \cup (17 + 8i, 6)(17 + 8i, 7) | 0 \leq i \leq \frac{(m - 17)}{8}\} \cup \{(1, 6)(9, 6) \cup (1, 7)(9, 7)\}. \) Third, add edge set \(E_{30} = \{(9 + 8i, 6)(9 + 8i, 7)(10 + 8i, 7) | 0 \leq i \leq \frac{(m - 17)}{8}\} \cup \{(1, 6)(m, 6) \cup (1, 7)(m, 7)\}. \) Finally, a Hamiltonian cycle \(C \) is yielded, whose \(|E_1(C)| = 32 + (26 + 2) = 32 + 28 \) and \(|E_2(C)| = 31 + 28x \). As a result of \(|E_1(C)| - |E_2(C)|\| = 1 \), it verify that \(C \) is a BHC.

When \(n > 7 \), let \(y = \frac{(n - 7)}{4} \). Stack \(y \) BHCs, which is shown in Fig. 12, above Fig. 28. Then delete edge set \(E_{31} = \{(1, 8 + 4i)(1, 11 + 4i) | 10 \leq i \leq \frac{(n - 11)}{4}\} \cup \{(1, 1)(1, 7)\}, \) and add edge set \(E_{32} = \{(1, 7 + 4i)(1, 8 + 4i) | 10 \leq i \leq \frac{(n - 11)}{4}\} \cup \{(1, 1)(1, n)\}. \) After that, a BHC on \(T_{m,n} \) is generated.

Case 3.6. \(m \equiv 8 = 3 \) and \(n \equiv 4 = 3 \)

Fig. 30 represents a BHC on \(T_{3,7} \), which is used to construct a BHC on \(T_{m,7} \). Besides, Fig. 31 illustrates how to connect Fig. 27 and Fig. 30. Let \(x = \frac{(m - 3)}{8} \) for \(m > 3 \). Then, copy Fig. 27 for \(x \) times, and inset them on the right side of Fig. 30. Next, eliminate edge set \(E_{33} = \{(4 + 8i, 6)(4 + 8i, 7) \cup \{(11 + 8i, 6)(11 + 8i, 7) | 10 \leq i \leq \frac{(m - 11)}{8}\} \cup \{(1, 6)(3, 6) \cup (1, 7)(3, 7)\}, \) and put edge set \(E_{34} = \{(3 + 8i, 6)(4 + 8i, 6) \cup (3 + 8i, 7)(4 + 8i, 7) | 0 \leq i \leq \frac{(m - 11)}{8}\} \cup \{(1, 6)(m, 6) \cup (1, 7)(m, 7)\}. \) Therefore, a Hamiltonian cycle \(C \) is established, whose \(|E_1(C)| = 10 + (26 + 2)x = 10 + 28x \) and \(|E_2(C)| = 11 + 28x \). Because of \(|E_1(C)| - |E_2(C)|\| = 1 \), \(C \) satisfies the definition of BHC.

Case 3.7. \(m \equiv 8 = 5 \) and \(n \equiv 4 = 3 \)

In this section, \(T_{m,7} \) consists of the HC on \(T_{8,7} \), as shown in Fig. 27, and the BHC on \(T_{3,7} \), as shown in Fig. 32. When \(m > 5 \), make \(x = \frac{(m - 5)}{8} \). First of all, inset Fig. 27 for \(x \) times on the right side of Fig. 32. So as to connect all figures, delete edge set \(E_{35} = \{(6 + 8i, 6)(6 + 8i, 7) \cup \{(13 + 8i, 6)(13 + 8i, 7) | 10 \leq i \leq \frac{(m - 13)}{8}\} \cup \{(1, 6)(5, 6) \cup (1, 7)(5, 7)\}, \) and add edge set \(E_{36} = \{(5 + 8i, 6)(6 + 8i, 6) \cup (5 + 8i, 7)(6 + 8i, 7) | 10 \leq i \leq \frac{(m - 13)}{8}\} \cup \{(1, 6)(m, 6) \cup (1, 7)(m, 7)\}. \) As a result, a Hamiltonian cycle \(C \) on \(T_{m,7} \) is yielded, whose \(|E_1(C)| = 18 + (26 + 2)x = 18 + 28x \) and \(|E_2(C)| = 17 + 28x \), as shown in Fig. 33. Without a doubt, \(C \) is a BHC due to \(|E_1(C)| - |E_2(C)|\| = 1 \).
When \(n > 7 \), the way of constructing the BHC on \(T_m, n \) is similar to Case 3.5. Only one difference is to replace Fig. 29 with Fig. 33.

Case 3.10. \(m \) mod 8 = 7 and \(n \) mod 4 = 3

There is a BHC on \(T_7, 7 \) as shown in Fig. 34. When \(m > 7 \), use the BHC on \(T_7, 7 \) mentioned above as the beginning. Make \(x = (m - 7) / 8 \), then inset \(x \) HCs, which is shown in Fig. 27, on the right side of Fig. 34. Then, remove edge set \(E_{37} = \{(15 + 8i, 6)(15 + 8i, 7) | 0 \leq i \leq (m - 15) / 8\} \cup (1, 6)(7, 6) \cup (1, 7)(7, 7) \cup (8 + 8i, 6)(8 + 8i, 7) \) and add edge set \(E_{38} = \{(7 + 8i, 6)(8 + 8i, 6) \cup (7 + 8i, 7)(8 + 8i, 7) | 0 \leq i \leq (m - 15) / 8\} \cup (1, 6)(m, 6) \cup (1, 7)(m, 7) \). Thus, a Hamiltonian cycle \(C \) on \(T_m, 7 \) is built, which is shown in Fig. 35.

REFERENCES

