Use of Heliox during Spontaneous Ventilation: Model Study

Martin Rozanek, and Karel Roubik

Abstract—The study deals with the modelling of the gas flow during heliox therapy. A special model has been developed to study the effect of the helium upon the gas flow in the airways during the spontaneous breathing. Lower density of helium compared with air decreases the Reynolds number and it allows improving the flow during the spontaneous breathing. In the cases, where the flow becomes turbulent while the patient inspires air the flow is still laminar when the patient inspires heliox. The use of heliox decreases the work of breathing and improves ventilation. It allows in some cases to prevent the intubation of the patients.

Keywords—Gas flow, heliox, Reynolds number, turbulent flow.

I. INTRODUCTION

One of problems may result in respiratory insufficiency of people suffering by respiratory problems. These patients require use of artificial lung ventilation or different supportive ventilatory techniques that will provide sufficient amount of oxygen to the patient. Despite the use of new ventilatory techniques in the respiratory care, there still remains a lot of patients that have no or small benefit from the use of artificial lung ventilation. Lower density of helium contrary to air decreases the work of breathing and improves the patient’s oxygenation. The usage of heliox during spontaneous breathing could prevent the patients from intubation. It also optimizes the spontaneous breathing of the patients that suffers for example by asthma [1].

II. METHODS

The aim of this study is to simulate the effect of the use of heliox as a ventilatory mixture using a model of the respiratory system implemented in MATLAB [2]. Heliox is a gas mixture of oxygen and helium. If it is used in the respiratory care it is mixed often in 80:20 (70:30) ratio. It means that there is 80 (70) % of helium and 20 (30) % of oxygen in the mixture. Helium is an inert gas. It does not react with the human tissue; therefore the helium has no adverse effects upon the patient even when it is used for long periods [3]. The main advantage of the helium is lower density contrary to air. Helium has also low molecular weight and high rate of diffusion. It suggests that use of helium in the respiratory care can reduce the work of breathing and improve aerosol delivery in the respiratory system [3]. Gas properties are shown in Table I.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Density (kg.m(^{-3}))</th>
<th>Viscosity ((\mu) Poise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_2)</td>
<td>1,429</td>
<td>211,4</td>
</tr>
<tr>
<td>He</td>
<td>0,179</td>
<td>201,8</td>
</tr>
<tr>
<td>80 % N(_2), 20 % O(_2)</td>
<td>1,293</td>
<td>188,5</td>
</tr>
<tr>
<td>80 % He, 20 % O(_2)</td>
<td>0,429</td>
<td>203,6</td>
</tr>
<tr>
<td>70 % He, 30 % O(_2)</td>
<td>0,554</td>
<td>204,7</td>
</tr>
</tbody>
</table>

Heliox has a substantially smaller density contrary to air. Density and viscosity of the fluid mainly determines the characteristics of the flow. The laminar flow is viscosity-dependent and density-independent. The flow during laminar flow is described by Hagen-Poiseuille equation:

\[
\dot{V} = \frac{\pi r^4 \Delta P}{8 \eta l},
\]

where \(r\) is a diameter of the tube, \(\Delta P\) is the pressure gradient, \(\eta\) is dynamic viscosity of the fluid and \(l\) is the length of the tube.

When the turbulent flow occurs the flow is described by equation:

\[
\dot{V} = \frac{4\pi r^5 \Delta P}{\rho l},
\]

where \(\rho\) is a density of fluid.

It is evident that flow is smaller during the turbulent flow. The character of the flow is determined by the Reynolds number and it is computed according to the following equation:

\[
Re = \frac{\rho v d}{\eta},
\]

where \(v\) is velocity and \(d\) is diameter of the tube (airway) and \(\eta\) is dynamic viscosity.

The flow is laminar when the Reynolds number is smaller than 2000 approximately. The gas flow during turbulent flow is less efficient, therefore the effort of the staff is to maintain the laminar flow in the respiratory care. The Reynolds number
is much smaller with helium contrary to air or oxygen. In the
cases, where the air flow becomes turbulent the heliox flow
still remains laminar.

The gas flow during an orifice is described by equation (4):

$$\dot{V} = \left(\frac{2\Delta P}{\rho}\right)^{0.5}.$$ (4)

The flow through an orifice is density-dependent. It means
that heliox has theoretical assumptions to flow better through
the orifice when compared with air flow or oxygen flow.

The flow through potentially obstructed airway is described
by the Bernoulli equation:

$$P_1 - P_2 = \frac{1}{2}\rho(v_2^2 - v_1^2).$$ (5)

The gas flow velocity becomes higher in the obstructed
airway and the flow may become turbulent. This dependency
is also density dependent through Reynolds number and the
gas flow will be more effective with heliox compared with air.
Higher gas flow velocities are compensated by lower density
of heliox.

The heliox has a lower density contrary to air or oxygen
and presented equations show that heliox should have better
flow properties.

Heliox is used in the respiratory care in many cases as a
mixture of 30% of oxygen and 70% of helium (heliox 70:30)
or 20% of oxygen and 80% of helium (heliox 80:20). The
use of heliox is studied in the mathematical model of the
respiratory system that was developed to study the gas flow in
the airways [2]. The aim of the study is to support the theory
that heliox can optimize the spontaneous breathing of the
patient during respiratory disease.

Geometrical proportions of Weibel’s morphologic model of
the respiratory system were used to design the model of the
airways according to the anatomical structure of the
respiratory system [4]. The effect of heliox physical properties
upon the gas flow in the airways is studied using the
mathematical model of the airways.

III. RESULTS

The study is designed for adult patient with following
breathing parameters: tidal volume $V_t = 0.5$ l, breathing
frequency $f = 15$/min, time of inspiration $t_{ins} = 5/3$ s.

Reynolds number for gas flow in airways was computed for
air and heliox mixtures with ratio 80:20, 70:30 and 60:40. The
values of Reynolds number in first five generations of the
bronchial tree are shown in Fig. 1.

![Fig. 1 The Reynolds number in airways for heliox and air for normal condition of airways](image1)

The diameter of the airways was twice decreased in
generations 1 and 2 to model the obstruction of the airways.
Tidal volume and breathing frequency remain the same. The
values of Reynolds number are depicted in Fig. 2.

![Fig. 2 The Reynolds number in airways for heliox and air during obstruction of the airways](image2)

IV. DISCUSSION

The results of conducted simulations show that gas flow is
laminar in the airways during normal condition of the airways
for both: air and heliox. The Reynolds number is lower than
1500 for air. The Reynolds number is significantly lower
when heliox is used as the respiratory mixture. The Reynolds
number decreases with the generation of the bronchial tree as
the velocity of the gas flow become lower.

The diameter of the airway was 2x decreased for simulation
of the obstructed airways. Reynolds number is in trachea
almost 3000 during breathing air and it suggests that the gas
flow is turbulent in the trachea. It means that gas flow is less
efficient and smaller amount of gas enters the lungs. The
Reynolds number is lower when simulating the use of heliox
and the gas flow remains laminar contrary to air. The gas flow
is more efficient with heliox when the airways are obstructed.
V. CONCLUSION

The conducted simulations show that Reynolds number is significantly lower during heliox therapy. It suggests that heliox can be used to improve the gas flow during spontaneous ventilation and maintain sufficient oxygenation without an intubation of the patient. The clinical study will be made to confirm these results.

ACKNOWLEDGMENT

This research has been supported by MSM 6840770012.

REFERENCES