Effect of Welding Processes on Fatigue Properties of Ti-6Al-4V Alloy Joints

T.S.Balasubramanian, V.Balasubramanian and M.A.Muthumanikkam

Abstract—This paper reports the fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V titanium alloy. Centre cracked tensile specimens were prepared to evaluate the fatigue crack growth behaviour. A 100kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load (stress ratio of 0.1 and frequency of 10 Hz). Crack growth curves were plotted and crack growth parameters (exponent and intercept) were evaluated. Critical and threshold stress intensity factor ranges were also evaluated. Fatigue crack growth behaviour of welds was correlated with mechanical properties and microstructural characteristics of welds. Of the three joints, the joint fabricated by laser beam welding exhibited higher fatigue crack growth resistance due to the presence of fine lamellar microstructure in the weld metal.

Keywords—Fatigue, Non ferrous metals and alloys, welding

I. INTRODUCTION

Ti-6Al-4V alloy has important characteristics such as high strength to weight ratio, excellent corrosion resistance, good toughness, low thermal expansion rate, high temperature creep resistance and good formability. The welds and welded joints of Ti-6Al-4V alloy fabricated in nuclear engineering, civil industries, transportable bridge girders, military vehicles, road tankers and space vehicles [1]-[3] are subjected to fluctuating loads. This kind of loading causes small cracks to grow during life of the component and leads to fatigue failure. A detailed study of this crack growth measurement could prevent the failure with prediction, which could ensure that the crack will not propagate and fail prior to detection. This necessitates a fatigue crack growth measurement of the Ti-6Al-4V alloy welded joints to avoid catastrophic failure.

The welding technology of titanium is complicated due to the fact that at temperatures above 550°C, and particularly in the molten stage, it is known to be very reactive towards atmospheric gases such as oxygen, nitrogen, carbon or hydrogen causing severe embrittlement [4].

Gas tungsten arc welding (GTAW) is a most preferred welding method for reactive materials like titanium alloy due to its comparatively easier applicability and better economy [5]. Laser beam welding (LBW) has been used for welding of titanium alloys due to its advantages such as precision and noncontact processing, with a small heat affected zone (HAZ), consistent and reliable joints etc [4]. Electron beam welding (EBW) is highly suitable for joining of titanium, due to high vacuum inside the chamber where the process is carried out, which shields hot metal from contamination [2]. Fatigue crack growth behavior of $\alpha + \beta$ Ti-Al-Mn alloy welded by an automated GTAW, manual GTAW and EBW processes was investigated by Keshava Murthy et al. [6]. They reported that a significant increase in fatigue crack growth resistance was due to the presence of tensile residual stress normal to the fatigue load in addition with lamellar microstructure. Saxena et al. [7] studied the effect of phase morphology of fatigue crack growth behavior of $\alpha + \beta$ titanium alloy and reported that the fatigue crack growth was strongly influenced by the phase morphology. A study was carried out by Sinha et al. [8] to find out the effects of positive stress ratios on the propagation of long and short fatigue cracks in mill annealed Ti–6Al–4V. It was found from the investigation that the effects of stress ratio on fatigue crack growth rates can also be rationalized largely by crack closure arguments. Differences between the long and the short crack behavior at low stress ratios are attributed to lower levels of crack closure in the short crack regime. Boyce et al. [9] investigated that the influence of load ratio and maximum stress intensity and found that crack growth and threshold are independent of loading frequency up to 50-1000 Hz. The fatigue thresholds were found to vary significantly with positive load ratio (R =0.1-0.95). At load ratios larger than 0.5-0.95, where (global) crack closure could no longer be detected,Say et al. [10] explored the influence of porosity on the fatigue crack growth behavior of Ti-6Al-4V alloy laser welds and concluded that the effect of porosity against fatigue crack growth resistance was less at lower stress ratio compared to higher stress ratio. Ding et al. [11] investigated the effect of hydrogen on fatigue crack growth behaviour of Ti-6Al-4V and reported that hydrogen embrittlement enhanced cracking and alleviated the effect of crack deflections in Ti–6Al–4V at a higher stress ratio of 0.5. Wang et al. [12] reported the influences of precrack orientations in welded joint of Ti–6Al–4V on fatigue crack growth. It was also reported that the specimen with precrack along the weld center line exhibited lower fatigue crack propagation rate and significantly higher threshold.
stress intensity than the base metal specimen. Although crack path fluctuations and crack bifurcations occurred frequently in martensite structures of fusion zone (FZ), in the initial propagation stage, the crack in the specimen with precrack along the weld center line propagated by striation mechanism, not cleavage mechanism. Though recent improvement in welding techniques that allow to realize high quality welded joints, the joint properties are greatly influenced by the welding processes. Apart from the basic design of the new structure, there is also increasing interest in methods for assessing the remaining service lives of existing structure by the fracture mechanics approach, where fatigue crack growth data are used in conjunction with the stress intensity factor to calculate the progress of a known flaw. From the literature review, it is understood that the extensive research work has been carried out on fatigue behaviour of forgings and bars of Ti-6Al-4V alloy. Most of the published information focuses on the effect of stress ratio, surface characteristics, phase morphology and residual stress on crack growth behaviour. However, there is no literature available comparing the fatigue crack growth behaviour of GTAW, LBW and EBW joints of rolled plates of Ti-6Al-4V alloy. Hence, the present investigation was carried out to understand the fatigue crack growth behaviour of GTAW, LBW and EBW joints of Ti-6Al-4V alloy.

II. EXPERIMENTAL WORK

The rolled plates of 5.4 mm thick Ti–6Al–4V alloy were used as base metal to fabricate the joints. The chemical composition of the BM is presented in tables 1

<table>
<thead>
<tr>
<th>Table I</th>
<th>CHEMICAL COMPOSITION OF BASE METAL (WEIGHT %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>6.38</td>
</tr>
</tbody>
</table>

The optical micrograph of BM is shown in Fig.1. It contains bimodal structure of elongated grains of ‘α’ (light etched) and transformed ‘β’ (dark etched) in addition with some amount of acicular ‘α’. The ‘β’ phase is distributed at the boundaries of the ‘α’ phase. Joint configuration used in this study is shown in Fig.2. Single ‘V’ butt joint configuration was prepared as shown in Fig.2a to fabricate the joints using GTAW process. Square butt joint configuration was prepared as shown in Fig.2b to fabricate the joints using EBW and LBW processes. Few trial experiments were conducted and the welded specimens were sectioned for macrographic examination to find out the complete joint penetration (CJP) and defect free joints. The welding trial which produced defect free CJP was considered as the optimized welding condition, the corresponding parameters were used to weld the joints. The optimized welding conditions are presented in table 2. Necessary care was taken to avoid joint distortion during welding. The welding was carried out normal to the rolling direction of the base metal.

<table>
<thead>
<tr>
<th>Table II</th>
<th>WELDING PARAMETERS USED TO FABRICATE THE JOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>GTAW</td>
</tr>
<tr>
<td>Machine</td>
<td>Lincoln, USA.</td>
</tr>
<tr>
<td>Polarity</td>
<td>AC, DCEN</td>
</tr>
<tr>
<td>Filler Metal</td>
<td>ERTi-5</td>
</tr>
<tr>
<td>Electrode</td>
<td>Tungsten</td>
</tr>
<tr>
<td>Shielding Gas</td>
<td>100% Argon</td>
</tr>
<tr>
<td>Current</td>
<td>125 A</td>
</tr>
<tr>
<td>Voltage</td>
<td>10 V</td>
</tr>
<tr>
<td>Welding Speed (mm/min)</td>
<td>60</td>
</tr>
<tr>
<td>Power</td>
<td>-</td>
</tr>
<tr>
<td>Heat Input (kJ/mm)</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Joint and specimen dimensions are shown in Fig.3. The welded joints were sliced as shown in Fig.3a, using wire-cut Electric Discharge Machining (WEDM) to prepare fatigue and tensile test specimens. Centre Cracked Tension (CCT) fatigue crack growth test specimen were prepared (to the dimensions as shown in Fig.3b) to evaluate the fatigue crack growth resistance of the welds. The slices derived from the single pass welded joints were reduced to a thickness of 5 mm by shaping and grinding processes to obtain flat and required surface roughness. Then the sharp notches were machined in the weld metal region to the required length using the WEDM process. Procedures prescribed by the ASTM E647-04 standard were followed for the preparation of the CCT specimens. The weld beards of the joints were machined and
the effect of bead profile was eliminated in this study. The smooth tensile specimens were prepared (as shown in Fig. 3c) to evaluate yield strength, tensile strength and percentage elongation. The tensile specimens were prepared as per the ASTM E8M-04 standard guidelines.

![Scheme of welding with respect to rolling direction and extraction of specimens (T-tensile, C-CCT and M-metallographic specimens)](image)

![Center cracked tension (CCT) fatigue specimen](image)

![Tensile specimen](image)

All dimensions are in ‘mm’

Fig. 3 Joint and specimen dimensions

The photographs of fabricated joints and CCT specimens are displayed in Fig. 4. The fatigue crack growth experiments were conducted at five different stress levels (50 MPa, 75 MPa, 100 MPa, 125 MPa and 150 MPa). All the experiments were conducted under uniaxial tensile loading condition (Tension-Tension, R=stress ratio, min/ max = 0.1 Frequency=10Hz) using servo hydraulic fatigue testing machine (Make: INSTRON, UK; Model: 8801) under constant amplitude loading.Before loading, the specimen surface was polished using metallographic procedures and illuminated suitably to enable the crack growth measurement. A traveling microscope (Make: MITUTOYA; Model: 5010) attached with a web camera and video output was used to monitor the crack growth rate with an accuracy of 0.01 mm.

![Photographs of welded joints and CCT specimen (a-c: joints; d-g: CCT specimens)](image)

In this investigation, the applied stress cycle was in the tensile mode (the minimum stress was kept at 0.1Pmax) as the compressive mode usually closes the fatigue crack. The data points measured with an accuracy of 0.01 mm were fitted with a smooth curve as in the form of crack length vs number of cycles (a vs N). Tensile test was carried out in 100 kN, electro-mechanical controlled Universal Testing Machine (Make: FIE-BLUE STAR, India, Model: UNITEK-94100). The specimen was loaded at the rate of 1.5 kN/min. The 0.2% offset yield strength was derived using extensometer. The percentage elongation and percentage reduction in cross sectional area were evaluated. The specimens for metallographic examination were sectioned to the required sizes from the weld regions and polished using different grades of emery papers. Final polishing was done applying the diamond compound (1-2 µm particle size) in the disc polishing machine. Specimens were etched with Kroll’s reagent to reveal the macro and microstructure. The micro structural analysis was done by optical microscope (Make: MEIJI, Japan; Model: ML7100). The fractured surfaces of fatigue tested specimens were analyzed using scanning electron microscope (SEM, Make: HITACHI, S400N) at higher magnification to study the fracture morphology to establish the nature of the fracture.

III. RESULTS

A. Fatigue Crack Growth results

The measured variation in crack length (2a) and the corresponding number of cycles (N) endured under the action
of particular applied stress range were plotted (Fig.5) for all the joints. The fracture mechanics based Paris Power equation [13], given below, was used to analyze the experimental results.

\[
da/dN = C (\Delta K)^m
\]

Where, \(da/dN\) - crack growth rate,
\(\Delta K\) - Stress intensity factor (SIF) range,
‘C’ and ‘m’ are constants.

The SIF value was calculated for different values of growing fatigue crack length ‘2a’ using the following expression [14]

\[
\Delta K = \phi (\Delta \sigma) \sqrt{\pi a}
\]

However, the geometry factor ‘\(\phi\)’ for the CCT specimen was calculated using the expression given below

\[
\phi = F (\alpha) = \sec \{(\alpha)/2\}
\]

Where \(\alpha = a/W\)

The crack growth rate, \(da/dN\) for the propagation stage was calculated for steady state growth regime, at different intervals of crack length increment, against the associated number of cycles to propagation, as explained in the earlier section. The relationship between SIF range and the corresponding crack growth rate (\(da/dN\)) in terms of best fit line is shown in Fig.6 for all joints. The data points plotted in the graph mostly correspond to the second stage of Paris sigmoidal relationship (10^{-6} to 10^{-3} mm/cycle). The exponent ‘m’ (the slope of the line on log-log plot) and intercept ‘C’ of the line were determined and are presented in Table III.

<table>
<thead>
<tr>
<th>Joint Type</th>
<th>Crack growth exponent ‘m’</th>
<th>Intercept ‘C’</th>
<th>Threshold SIF range, (\Delta K_{th}) (MPa√m) @ 1X10^{-6}</th>
<th>Critical SIF range, (\Delta K_{cr}) (MPa√m) @ 1X10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Metal</td>
<td>3.27</td>
<td>5.7 x 10^{-9}</td>
<td>5.0</td>
<td>40</td>
</tr>
<tr>
<td>GTAW</td>
<td>4.19</td>
<td>2.2 x 10^{-9}</td>
<td>4.0</td>
<td>20</td>
</tr>
<tr>
<td>EBW</td>
<td>3.90</td>
<td>3.2 x 10^{-9}</td>
<td>4.5</td>
<td>25</td>
</tr>
<tr>
<td>LBW</td>
<td>3.69</td>
<td>3.6 x 10^{-9}</td>
<td>4.7</td>
<td>30</td>
</tr>
</tbody>
</table>

Threshold SIF range (\(\Delta K_{th}\)) and critical SIF range (\(\Delta K_{cr}\)) are two important design parameters to be obtained from fatigue crack growth test. At higher values of \(\Delta K\), around 10^{-3} mm/cycle, unstable crack growth occurred and the corresponding \(\Delta K\) value was taken as critical SIF range (\(\Delta K_{cr}\)). In CCT specimen, it is very difficult to obtain the condition for non-propagating cracks due to the presence of machined notch. Hence, in the present analysis, the \(\Delta K\) value at 10^{-6} mm/cycle was taken as threshold SIF (\(\Delta K_{th}\)). The values of \(\Delta K_{cr}\) and \(\Delta K_{th}\) for all the joints were evaluated and are presented in Table 3. The relationship between SIF ranges with respect to crack initiation, crack propagation and final failure is plotted and presented in Fig.7.
B. Tensile Test Results

The transverse tensile properties such as yield strength, tensile strength and percentage elongation of Ti–6Al–4V alloy joints were evaluated. In each condition, three specimens were tested, and the average of three results is presented in Table 4. The yield strength and tensile strength of unwelded base metal are 969 MPa and 1002 MPa, respectively. But the respective yield strength and tensile strength of GTAW joint are 890 MPa and 940 MPa. This indicates 6% reduction in strength values due to GTAW process. The yield strength and tensile strength of LBW joint are 960 MPa and 985 MPa,
respectively which are 2% lower compared to base metal. However, the yield strength and tensile strength of EBW joint are 950 MPa and 1000 MPa, respectively. Of the three welded joints, the joint fabricated by EBW process exhibited higher strength values, and the difference is 6% higher compared to GTAW joints and 2% higher compared to LBW joints.

<table>
<thead>
<tr>
<th>TABLE IV</th>
<th>TRANSVERSE TENSILE PROPERTIES OF BASE METAL AND WELDED JOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2% offset Yield strength (MPa)</td>
</tr>
<tr>
<td>BM</td>
<td>969</td>
</tr>
<tr>
<td>GTAW</td>
<td>890</td>
</tr>
<tr>
<td>LBW</td>
<td>960</td>
</tr>
<tr>
<td>EBW</td>
<td>950</td>
</tr>
</tbody>
</table>

Elongation of unwelded base metal is 12.7% but the elongation of GTAW joint is 10.15%. This suggests 20% reduction in ductility due to GTAW process. Similarly, the elongation of LBW joints is 15%, which is 18.1% higher compared to the base metal. However, the elongation of EBW joint is 7.7%. Of the three welded joints, the joint fabricated by LBW process showed higher ductility values, and the difference is 48% higher compared to GTAW joint and 95% higher compared to EBW joint.

C. Microstructure

Optical micrographs of weld metal region of the joints are presented in Fig.8. Fusion zone microstructure of GTAW joint (Fig.8a) containing the coarse serrate and acicular α structures of grain boundary α, massive α, and Widmanstätten α + β [15]. The weld fusion zone in titanium alloys is characterized by coarse, columnar prior-beta grains that originate during weld solidification. The size and morphology of these grains depends on the nature of the heat flow that occurs during weld solidification. The fusion-zone beta grain size depends primarily on the weld energy input, with a higher energy input promoting a larger grain size. The reason for the grain coarsening of the GTAW joint can be justified to the heat input involved in this process. The heat input supplied here was 1.25 kJ/mm (Table 3) which was higher compared with the LBW and EBW processes. The higher heat input led to longer cooling time resulting the grain growth and ended up with coarse grained structure of massive α, and Widmanstätten α + β. Three-dimensional or mixed two-dimensional / three dimensional heat-flow conditions, such as those present in single-pass and multi pass gas tungsten arc weldments, promoted the formation of more complex, multidirectional beta grain morphologies. The lower cooling rates associated with GTAW (10 to 100 °C/s), resulted in a coarse structure of Widmanstätten alpha plus retained beta, or a mixture of this structure and alpha-prime [16].

D. SEM Fractographs

The fatigue fracture surface appearance corresponding to crack initiation, crack propagation and the final failure regions of base metal, GTAW, EBW and LBW joints, as observed under the SEM is displayed in Figs.9 - 11. Here, the fatigue crack initiation region (FCI) is corresponding to 1 mm from the tip of the machined notch; fatigue crack propagation (FCP) region is referred to 1 to 6 mm; final failure (FF) region is referred to 6 mm away from the crack initiation region. For fracture surface analysis, the specimens tested at 50 MPa applied stress range level were
taken from all the joints to make comparative analysis.

Fig.9 Fractographs of FCI region

Fig. 9 shows the fracture surface morphology of fatigue crack initiation (FCI) region. In all the joints, the crack initiations sites are clearly visible and it can be observed from the Fractographs that the fatigue cracks have initiated from multiple crack initiation sites. Base metal fractograph (Fig.9a) shows the presence of many small voids, which bear little resemblance to conventional dimples, are visible among the small facets. A typical Stage I fatigue fracture is observed in GTAW joint (Fig. 9b). Stage I fatigue fracture surfaces is faceted, often resemble cleavage, and do not exhibit fatigue striations. Stage I fatigue is normally observed on high-cycle low-stress fractures and is frequently absent in low cycle high-stress fatigue [17]. The micro-level striations have been observed in the ‘β’ grains since the ‘α’ grains are probable crack initiation sites (Fig. 9c), in the EBW joint. Tearing topography surfaces (TTS), ductile rupture (DR) and cleavage mode of fracture was observed in LBW joint (Fig.9d). TTS are generally characterized by relatively smooth, often flat, areas or facets that usually contain thin tear ridges (Fig.9a, 9c and 9d). River pattern of cleavage sites are also visible at the bottom right corner in the fractograph (Fig.9d). Large numbers of crack initiation sites are seen in GTAW joints, comparatively lesser nucleation site only visible in base metal whereas moderate numbers of crack initiation sites were observed in EBW and LBW welds.

Fig. 10 reveals the fracture surface appearance of fatigue crack propagation (FCP) region (where steady state crack growth occurred). Invariably in all the joints, the fracture surface shows the crack arrest marks known as fatigue striations, which are the visual record of the position of the fatigue crack front during crack propagation through the material. The base metal fractograph shows the presence of striations in the facets itself (Fig.10a). This can be adjudged by the characteristic feature of the fatigue striations: The striations are parallel and right angles to the local direction of crack propagation. The crack initiation sites can be identified by drawing an imaginary radius perpendicular to striation direction and centered at the origin. The direction of crack propagation is indicated by arrow mark. GTAW weld fractograph (Fig.10b) clearly reveals the presence of transgranular facets with some secondary cracking. In EBW joint fractograph (Fig.10c) the change from transgranular facets to dimples like fracture surface can be easily visible. LBW joint fractograph presented in Fig.10d reveals the fine intergranular fracture surface appearance in addition with few micro cracks and isolated dimples. From the FCP region fractography, it is understood that the spacing between striations is wider in GTAW joint, closer in base metal and intermediate in EBW and LBW joints.

Fig.10 Fractographs of FCP region

Fig.11 exhibits the fracture surface appearance of final failure region (FF) region (where unstable crack growth occurred) of all the joints. From the fractographs it is observed that the tear dimples are elongated along the loading direction and this is mainly because of the limit load condition at the time of final fracture. Even though unstable crack growth occurred in the final failure region, the final fracture took place in the ductile mode and it is evident from the presence of dimples. The mode of failure for the final failure (FF) region of BM and the welded joints is a combination of ductile with microvoid coalescence called DR and TTS. The fractograph of base metal presented in Fig.11a reveals the structure of ductile mode failure with dimples of fine size. The macro-level striations are observed in the ‘β’ grains since the ‘α’ grains are probable crack initiation sites (Fig. 11b) in the GTAW joint.
Preferable microstructure in the weld region.

Superior tensile properties of the welded joint and (ii) fatigue crack growth resistance of the LBW joint are: (i) and hence the fatigue life is shorter. The reasons for the better offered by the material to the growing fatigue crack is lower is larger, then slope of the curve is higher and the resistance is higher and hence the fatigue life is longer. If this exponent resistance offered by the material to the growing fatigue crack exponent is lower, then slope of the curve is lower and the slope of the curve drawn between da/dN and SIF range. If this crack growth resistance compared to GTAW and EBW joints.

Understood that the LBW joint is exhibiting superior fatigue region, is much better than other joints.

EBW fractograph (Fig.11c) shows the presences of many small voids, which bear little resemblance to conventional dimples, are visible among the small facets. In EBW joint fractograph, facets are the dominant failure pattern, but in LBW joint fractograph cleavage facets and dimples are clearly visible. To summarize, the final fracture surface of base metal contains only dimples; higher amount of facets and less area of dimples are observed in GTAW joint; both facets and dimples were seen in EBW and LBW joints. In EBW joint the dimples are presented in isolated locations while in LBW joint the dimples are continuous in a particular area. This suggests that the resistance offered by LBW joint against the growing fatigue crack, even in the unstable crack growth region, is much better than other joints.

IV. DISCUSSION

From the fatigue crack growth test results (Table 3), it is understood that the LBW joint is exhibiting superior fatigue crack growth resistance compared to GTAW and EBW joints. The fatigue crack growth exponent was obtained from the slope of the curve drawn between da/dN and SIF range. If this exponent is lower, then slope of the curve is lower and the resistance offered by the material to the growing fatigue crack is higher and hence the fatigue life is longer. If this exponent is larger, then slope of the curve is higher and the resistance offered by the material to the growing fatigue crack is lower and hence the fatigue life is shorter. The reasons for the better fatigue crack growth resistance of the LBW joint are: (i) superior tensile properties of the welded joint and (ii) Preferable microstructure in the weld region.

A. Superior Mechanical Properties

Transverse tensile properties of the base metal and welded joints presented in Table 4 indicate that the LBW joint is exhibiting higher yield strength compared to GTAW and EBW joints. During tensile test, all the specimens invariably failed in the weld metal. This indicates that the weld metal is comparatively weaker than other regions and hence the joint strength is controlled by the weld metal strength. The mechanical properties (yield strength, tensile strength and elongation) of LBW joint are superior compared to other joints (see Table 4). Higher yield strength of the LBW joint is greatly used to enhance the endurance limit of the LBW joint and hence the fatigue crack initiation is delayed. Larger elongation (higher ductility) of the LBW joint also imparts greater resistance to fatigue crack propagation and hence fatigue crack growth rate is comparatively slower. The combined effect of higher yield strength and higher ductility of the LBW joint offers enhanced resistance to crack initiation and crack propagation and hence the fatigue performance of the LBW joint is superior compared to GTAW and EBW joints. In lower strength weld metal (as in the case of GTAW), the deformation and the yielding are mainly concentrated in the weld metal zone and the extension of the plastic zone is limited within the weld metal. Eripret and Hornet [18] stated that as soon as the plastic zone reaches the fusion line, plasticity keeps on developing along the interface between the parent material and the weld metal. The triaxial state of stress is high in the weld metal and the relaxation of this stress is poor. The crack driving force needed for crack extension is small. Hence, the fracture toughness of the lower strength weld metal is not high. On the other hand, if strength of the weld metal is more or less equal to the base metal, as in the case of LBW joint, the plastic zone can easily extend into the parent material because the deformation and yielding occur in both weld metal and the base metal. The stress relaxation can easily take place in the crack tip region. Ghosh et al., [19] opined that more crack driving force is needed for crack extension and the fracture resistance of the higher strength weld metal is greater than the lower strength weld metal. This is also one of the reasons for superior fatigue crack growth resistance of the LBW joint.

B. Preferable Microstructure

In CCT specimen, the notch is machined in the weld metal region of joints by WEDM process to evaluate the crack growth behaviour of the weld metal under fatigue loading. The fatigue crack initiated from the tip of the machined notch and it grew in the weld region until final failure took place and hence the weld metal microstructure surely will have an influence on fatigue performance of the joints. The fatigue properties of metals are quite structure sensitive. The microstructure of the weld metal is influenced by the heat input of the welding processes. Of the three welding processes used in this investigation to fabricate the joints, the GTAW process recorded higher heat input compared to the LBW and EBW processes (Table 2). Generally, higher heat input will lead to slower cooling rate and slow cooling rate will result in
coarse microstructure. The lower strength of GTAW joint may be attributed by the presence of coarse serrat structures of grain boundary \(\alpha \), massive \(\alpha \), and Widmanstätten \(\alpha + \beta \). The moderate yield strength of EBW joint could be contributed to the weld metal microstructure containing of fine serrat and regular plate-shaped ‘\(\alpha \)’ microstructures. Though the plate shaped microstructures is comparatively finer than GTAW joint, it is coarser than the fine lamellar microstructure resulted in LBW joint. Thus EBW joint shows intermediate yield strength between GTAW and LBW joints. Higher yield strength exhibited by the LBW joint might be due to the presence of fine lamellar and acicular morphology in the weld metal. In this joint, the presence of martensitic structure is also observed. It was reported that cooling rates higher than 410oC/s are usually required for Ti-6Al-4V alloy to attain a completely martensitic structure [20]. The high self-quenched rate associated with the laser beam welding process certainly promotes the diffusion less transformation of the ‘\(\beta \)’ phase in to martensitic microstructure. The microstructure of the weld metal region will have greater influence on the fatigue performance of the joint than weld bead geometry, joint design etc. Microstructure invariably affects the fatigue strength by increasing the propensity for crack nucleation and its early growth, causing the ultimate failure of the joint. In addition to \(\alpha \) grain size, degree of age hardening, and oxygen content, the fatigue properties of two-phase \(\alpha + \beta \) alloys are strongly influenced by the morphology and arrangements of the two phases ‘\(\alpha \)’ and ‘\(\beta \)’. Equiaxed microstructure is presented in base metal, whereas lamellar, acicular and bimodal microstructures (primary \(\alpha \) in a lamellar matrix) are seen in LBW, EBW and GTAW joints [15]. In lamellar microstructures (Fig. 8b and c), fatigue cracks initiate at slip bands within ‘\(\alpha \)’ lamellae or at ‘\(\alpha \)’ along prior ‘\(\beta \)’ grain boundaries [21]. Since the resistance to dislocation motion as well as fatigue crack initiation depends on the ‘\(\alpha \)’ lamellae width, there is a direct correlation between fatigue strength and yield stress. For equiaxed structures, fatigue cracks nucleate along slip bands within ‘\(\alpha \)’ grain (Fig.1). Thus, fatigue strength correlates directly with the grain size dependent yield stress. In duplex structures, fatigue cracks can either initiate in the lamellar matrix, at the interface between the lamellar matrix and the primary ‘\(\alpha \)’ phase, or within the primary \(\alpha \) phase (Fig.8a). The precise crack initiation site depends on the cooling rate [22], and the volume fraction and size of the primary ‘\(\alpha \)’ phase [20, 21]. For a lamellar microstructure, lamellar width should be considered instead of grain size. A reduction of prior \(\beta \) grain size in lamellar microstructures and a reduction of the primary ‘\(\alpha \)’ volume fraction in duplex structures increase both low cycle fatigue life as well as fatigue strength [23, 24]. Simultaneously, this structural modification increases the resistance to crack growth. Therefore, the fine grained lamellar microstructure shows superior resistance to crack growth behavior over the coarse grained lamellar structure, while for duplex structures the lower primary \(\alpha \) volume fraction is superior to the higher one. The latter can probably be explained by the (near) absence or lower presence of agglomerates of primary \(\alpha \) grains and simultaneously reduced primary \(\alpha \) volume fraction. This primary \(\alpha \) cluster can act as large single grains, which are easy for micro cracks to propagate through. Thus the joints consisting coarse lamellar (EBW), bimodal (GTAW) yields lower fatigue crack growth resistance than the joint having fine lamellar microstructure (LBW). The presence of fine lamellar microstructure in the weld metal enhanced the yield strength and ductility of the LBW joint. Fine lamellar in addition with acicular morphology (inter locking nature of multi directionally oriented grains) play an important role for the resultant tensile and ductility of the LBW joint. It is well known that a structure containing a large percentage of lamellar ‘\(\alpha \)’ offers greater resistance to crack growth than equiaxed structures. This can be usually ascribed to the fact that crack path deviations and bifurcations can occur more easily in plate like structures [25]. The improvement in the yield strength and ductility are the reasons for higher fatigue crack growth resistance of LBW joint.

V. CONCLUSIONS

In this investigation, the fatigue crack growth parameters of GTAW, LBW and EBW joints of Ti-6Al-4V titanium alloy were evaluated. The important conclusions from this investigation are: (i) Fatigue crack growth resistance of Ti-6Al-4V alloy is greatly reduced by the welding processes. However, the joint fabricated by LBW process exhibited higher fatigue crack growth resistance (m=3.69) than EBW (m=3.9) and GTAW (m=4.19) joints. (ii) Though the threshold SIF range of Ti-6Al-4V alloy is not influenced significantly by the welding processes (varies between 4-5 MPa√m), the critical SIF range is appreciably influenced by the welding processes (varies between 20-40 MPa√m). (iii) Higher yield strength and higher ductility due to the presence of very fine lamellar shaped ‘\(\alpha \)’ microstructure in the weld metal are the main reasons for the superior fatigue performance of the LBW joints compared to GTAW and EBW joints. Lower heat input and faster cooling rate associated with LBW process is mainly responsible for the formation of very fine lamellar ‘\(\alpha \)’ in weld metal.

ACKNOWLEDGMENT

The authors wish to record their sincere thanks to the Combat Vehicle Research and Development Establishment (CVRDE), Avadi, Chennai, Government of India for providing financial support to carry out this investigation through a Contract Acquisition for Research Services project, No. CVRDE/MMG / 09-10/0043/CARS. The authors also register their sincere thanks to Defense Research & Development Laboratory (DRDL), Hyderabad for effective fabrication of the joints. The authors express their sincere thanks to M.Balakrishnan, Project Associate, CEMAJOR, Annamalai University for his useful contribution to carry out this investigation.
REFERENCES

[25] Titanium and titanium alloys (Fundamentals and applications), Edited by C. Leyens and M.