Modeling of Pulsatile Blood flow in a weak magnetic field

Chee Teck Phua, Gaëlle Lissorgues

Abstract — Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation.

This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location is found to be highly correlated.

Keywords — blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance

I. INTRODUCTION

With the advancement of bioelectronics, portable health monitoring devices are getting popular because they are able to provide continuous monitoring of an individual’s health condition with ease of use and comfort. Robust and portable health monitoring devices are increasingly required at places such as home, ambulance and hospital, and at situations including military training and sports.

Pulse rate is a measurement of the number of times the heart beats per minute. The heart pushes blood through the arteries, which expand and contract allowing blood to flow.

Current methods of heart or pulse rate acquisition can be classified into electrical [1][2], optical[3][7], microwave [4], acoustic [5][8][11], mechanical [6][9] or magnetic [10][12][13] means. Each of these methods has been studied in detail and its limitations have been well published and known.

The method of study here involves a simple and yet reliable magnetic means to acquire blood pulse [15]. Such a method measures the magnetic disturbance created by blood (i.e. Modulated magnetic signature of blood - MMSB) in a constant magnetic flux and will support the acquisition of blood pulse without the need for a good electrical or optical contact. Therefore, this method can be used to acquire pulse rate over a prolonged period of time.

In order to model MMSB, the flow of a biomagnetic fluid (i.e. blood) in a weak magnetic field strength (0.1-0.2 Tesla) will be investigated. As such, Biomagnetic fluid dynamics (BFD) by Haik et al [16] will be used, which deals with no induced electric current, and assumes that the flow of blood is affected by its magnetization properties.

II. SIMULATION MODEL

A. Model creation

1) Geometry description

The 2-dimensional simulation model geometry represents an oxygenated blood vessel embedded in a thin layer of tissues (skin) with a permanent magnet and magnetic sensor placed in close proximity as illustrated in Fig. 1. The model is created based on the proposed blood pulse measurement method using MMSB as outline in [15]. The domains labeled Air and Tissues in Fig. 1 are modeled as non-magnetic and have dimensions large (i.e. at least 5 times larger) as compared to the critical components in the simulation model (i.e. magnetic sensor, permanent magnet, skin and blood vessel). Therefore, the simulation results will be independent on these domains.

2) Magnetic environment and blood flux equations

The magnetic field sensor is modeled as a passive non-magnetic device capable of translating the magnetic field into potential difference output (i.e. voltage) following a non-linear function as shown in Fig. 2. However, the magnetic field sensor can be biased in this simulation model to operate as a linear sensor with high sensitivity.

The velocity and pressure fields in the blood stream are modeled based on Navier-Stroke equations, describing the time-dependent mass and momentum balances for an incompressible flow. The walls of the blood vessel are
assumed to have no-slip condition, \(u = v = 0 \), where \(u \) is the fluid velocity and \(v \) is the velocity of the wall.

The outlet of the blood vessel is setup as zero pressure and the inlet boundary blood assumes a parabolic flow profile. The normal inflow velocity is accordance to \(4 \, U_m \, s \cdot (1 - s) \), \([20]\) where \(s \) is a boundary segment length parameter that goes from 0 to 1 along the inlet boundary segment and \(U_m \) is the maximal flow velocity. The inflow velocity is assumed to follow a sinusoidal expression in time as described in (1) to emulate the heart beat.

\[
U_0 = 10.0 \, U_m \, s \cdot (1 - s) \cdot \left[\sin(\omega t) + \sqrt{3} \sin(\omega t)^2 \right] \tag{1}
\]

With the presence of a permanent magnet in the simulation model, the magnetic part of the model will be static and the Maxwell-Ampere’s law for the magnetic field \(H \) (A/m) and the current density \(J \) (A/m\(^2\)) in (2) can be applied. In addition, Gauss’ law for the magnetic flux density \(B \) (T) is stated in (3). This will result in the constitutive equations describing the relationships between \(B \) and \(H \) in the different parts of the modeling domain as shown in (4).

\[
\nabla \times H = J \tag{2}
\]
\[
\nabla \times B = 0 \tag{3}
\]
\[
B = \begin{cases}
\mu_0 \mu_{r, mag} H + B_{rem} & \text{permanent magnet} \\
\mu_0 \left(H + M_{ff}(H) \right) & \text{blood stream} \\
\mu_0 H & \text{tissue and air}
\end{cases} \tag{4}
\]

\(\mu_0 \) is the magnetic permeability of vacuum \((4 \pi \cdot 10^{-7} \)\(\text{N} \cdot \text{A}^{-1} \cdot \text{m}^{-1}) \)

\(\mu_{r, mag} \) is the relative magnetic permeability of the permanent magnet

\(B_{rem} \) is the remanent magnetic flux \((\text{A/m}) \)

\(M_{ff} \) is the magnetization vector in the blood stream \((\text{A/m}) \)

\[
\nabla \cdot \left(\frac{1}{\mu_0} \nabla x A - M_{ff} \right) = 0 \tag{5}
\]

Defining a magnetic vector potential \(A \) such that \(B = \nabla x A \), \(A = 0 \) and substituting this into (1) through (3), the equations can be simplified to a 2D problem with no perpendicular currents as shown in (5).

Coupling the magnetic equations with the 2-D model as shown in Fig. 1, the magnetic field at the sensor location will be solved and translated to voltage output using sensor response characteristics as shown Fig. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_{r, mag})</td>
<td>5x10(^4)</td>
<td>Relative permeability, magnet</td>
</tr>
<tr>
<td>(B_{rem})</td>
<td>0.2[T]</td>
<td>Remanent flux density, magnet</td>
</tr>
<tr>
<td>(chi_{ff})</td>
<td>-0.667x10(^{-7})</td>
<td>Magnetic susceptibility, ferrofluid</td>
</tr>
<tr>
<td>(\mu_{r, ff})</td>
<td>1+chi_{ff}</td>
<td>Relative permeability, ferrofluid</td>
</tr>
<tr>
<td>(k_{ff})</td>
<td>0.7</td>
<td>Ferrofluid mass fraction in blood stream</td>
</tr>
<tr>
<td>(\rho)</td>
<td>1050[kg/m(^3)]</td>
<td>Density, blood</td>
</tr>
<tr>
<td>(\mu_o)</td>
<td>0.00345[N/s/m(^2)]</td>
<td>Newtonian reference viscocity, blood</td>
</tr>
<tr>
<td>(U_m)</td>
<td>50[cm/s]</td>
<td>Maximum flow velocity</td>
</tr>
<tr>
<td>(F)</td>
<td>60[1/min]</td>
<td>Heart-beat rate</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>2*[rad]*[s]</td>
<td>Pulse angular velocity</td>
</tr>
</tbody>
</table>

Table 1 Parameters (values) used for simulation model
Table 2 Parameters (expressions) used for simulation model

<table>
<thead>
<tr>
<th>Name</th>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_0)</td>
<td>(\mu_0 \cdot q_a)</td>
<td>Permeability of vacuum</td>
</tr>
<tr>
<td>(M_{\text{ff}x})</td>
<td>(k_{\text{ff}}(\chi_{\text{ff}}/\mu_0)A_{zy})</td>
<td>Induced ferrofluid magnetization, (x)-component</td>
</tr>
<tr>
<td>(M_{\text{ff}y})</td>
<td>(-k_{\text{ff}}(\chi_{\text{ff}}/\mu_0)A_{zx})</td>
<td>Induced ferrofluid magnetization, (y)-component</td>
</tr>
<tr>
<td>(F_{\text{ff}x})</td>
<td>(k_{\text{ff}}(A_{zx}\cdot A_{zx} + A_{zy}\cdot A_{zyy})/\chi_{\text{ff}}/\mu_0/(1+\chi_{\text{ff}})^2)</td>
<td>Ferrofluid volume force, (x)-component</td>
</tr>
<tr>
<td>(F_{\text{ff}y})</td>
<td>(k_{\text{ff}}(A_{zx}\cdot A_{zy} + A_{zy}\cdot A_{zyy})/\chi_{\text{ff}}/\mu_0/(1+\chi_{\text{ff}})^2)</td>
<td>Ferrofluid volume force, (y)-component</td>
</tr>
</tbody>
</table>

The model is simulated by varying the distance between the sensor and the magnet, \(D_0 \). The amplitude obtained for each simulation will be used for comparison with experimental measurements in the Section III.

C. Numerical solutions

The model is verified to be properly setup by comparing first the simulated waveform at the sensor, which has an amplifier gain of 100 (Fig. 4), with the input sinusoidal (1) (Fig. 3). Based on these two plots, it can be concluded that the model is able to simulate the MMSB phenomena.

5). From these waveforms, it can be observed that both plots have similar ventricular response with peak voltage of approximately 19mV and total pulse duration of 0.5s.

III. COMPARISON WITH PHYSICAL MEASUREMENTS

A. Measurement setup

The experimental measurements on the wrist is setup as shown in Fig. 7. The distance, \(D_1 \), between the sensor and the magnet is varied for comparison with the simulation model described in Section II.
B. Measurement results and comparison with the model

The distance D_1 is varied from 1.5 cm to 3.0 cm and the voltage outputs from the sensor based on multiple measurements are normalized and plotted as shown in Fig. 8. In addition, the average voltage obtained for each D_1 is normalized and plotted in Fig. 9 for comparison with the simulated results as shown in Fig. 6.

Fig. 8 Plot of voltage (normalized) with varying distance between sensor and magnet

Fig. 9 Plot of average voltage (normalized) with varying distance between sensor and magnet

From Fig. 9, it can be observed that the simulated and measured data both peak at an approximate distance of 2 cm between the sensor and the magnet. In addition, both the simulated and measured voltages decline at a similar rate with respect to distance between the sensor and the magnet.

IV. CONCLUSION

The simulation model presented in this paper is based on the MMSB phenomena presented in [15]. The simulation model is found to be highly correlated with experimental results and it can be concluded that the simulation model has successfully modeled the MMSB phenomena. Such a model will allow design optimization of MMSB for physical implementation of a wearable device for pulse rate measurements.

With the completion of MMSB modeling in a simulation environment, future work will focus on the applications of MMSB for blood flow analysis.

ACKNOWLEDGMENT

The authors would like to thank Nanyang Polytechnic of Singapore and ESIJE, France for the opportunity to work on this development. In particular, the authors would like to express their gratitude to the School of Engineering (Electronics), Nanyang Polytechnic (Singapore) for the usage of facilities that supported this work.

REFERENCES