Determining the Gender of Korean Names for Pronoun Generation

Seong-Bae Park and Hee-Geun Yoon

Abstract—It is an important task in Korean-English machine translation to classify the gender of names correctly. When a sentence is composed of two or more clauses and only one subject is given as a proper noun, it is important to find the gender of the proper noun for correct translation of the sentence. This is because a singular pronoun has a gender in English while it does not in Korean. Thus, in Korean-English machine translation, the gender of a proper noun should be determined. More generally, this task can be expanded into the classification of the general Korean names. This paper proposes a statistical method for this problem. By considering a name as just a sequence of syllables, it is possible to get a statistics for each name from a collection of names. An evaluation of the proposed method yields the improvement in accuracy over the simple looking-up of the collection. While the accuracy of the looking-up method is 64.11%, that of the proposed method is 81.49%. This implies that the proposed method is more plausible for the gender classification of the Korean names.

Keywords—machine translation, natural language processing, gender of proper nouns, statistical method.

I. INTRODUCTION

In Korean an omission of subject or object which is considered as a complement freely occurs, where this is in general impossible in European languages such as English, French, German, and so on. Especially, the omission of a subject makes a severe problem in the machine translation systems of which target language requires a subject as a complement. For instance, in Korean-English machine translation system, a sentence without a subject in the source language, Korean, is valid, but the corresponding sentence translated into English without the subject is ungrammatical.

When a sentence is composed of two or more clauses and only one subject is given as a proper noun, there are two possibilities whether or not the clause with a subject shares the subject with those without a subject. When a subject is shared by multiple clauses, it is important to determine the gender of the subject in English-Korean machine translation. This is because a different pronoun should be generated for the clauses without a subject according to the gender of the shared subject. The goal of this paper is, therefore, to determine the gender of the subject. More generally, this task can be expanded into a classification of normal Korean names.

The rest of this paper is organized as follows. Section 2 surveys the previous work on named-entity recognition and pronoun generation in Korean. Section 3 proposes how the gender of Korean names is classified using a statistical method, and Section 4 gives an overall structure how the proposed method is used in Korean-English machine translation. Section 5 presents the experimental results. Finally, Section 6 draws conclusions.

II. RELATED WORK

The named-entity recognition has been implemented by two kinds of methods. The first one is rule-based methods which use regular-expression-like patterns and dictionaries [11]. When the dictionaries contain the great number of entities and the general patterns are extracted from a large-scale corpus, the performance of rule-based methods will be good. However, the extraction of rules is in general very difficult, and the cost of constructing such large dictionaries is extremely high.

The other is to use the statistical information for this task. This methods collect the statistical knowledge from entity-
tagged corpora, and then determine the entity category using the knowledge. Since there is no large-scale entity dictionary for Korean, most named entity recognizers for Korean uses the statistical methods [7]. What determines the performance of these methods is the size of tagged corpora [1]. This is because the large scale corpora reduce the possibility of data sparseness. As a solution of this phenomenon, various types of semi-supervised methods have been adopted. For instance, Chung et. al [1] and Kwak [7] use the co-training algorithm, while Kim et. al propose an acyclic weighted digraph [5].

The generation of an appropriate pronoun is a classical problem in Korean-English machine translation. This problem is well-known as ‘zero-pronoun problem’. The zero-pronoun is a common problem in both Korean and Japanese and it is considered as a very important problem in corpus annotation [9] and Korean language processing [3] Roh and Lee adopt a linguistic theory called ‘centering theory’ to solve this problem [10]. While machine learning methods are common in this problem [12], they are not widely used for processing zero pronoun in Korean. As a first step to solve zero pronoun problem in Korean, we first focus on the gender determination of Korean names.

III. NAME AS A SEQUENCE OF SYLLABLES

From the point of view for machine learning, the task of classifying the gender for a given name is a kind of classification task. That is, for a given name \(N \), the task is to determine its gender \(y \in Y = \{\text{male, female}\} \). When a training set \(D = \{(N_1, y_1), (N_2, y_2), \ldots, (N_n, y_n)\} \) composed of a pair of a name and its gender, the task is to find a function \(f : N \rightarrow Y \).

Such a function \(f \) can have various forms, the conditional probability is one of simplest and strongest candidates for the function \(f \). That is, if the conditional probability is used for \(f \), the task which we focus on is to determine the gender of a newly incoming name \(N' \) as follows.

\[
y^* = \arg \max_{y \in \{\text{male, female}\}} P(y | N', \theta),
\]

(1)

where \(\theta \) is a parameter for the distribution \(P \) and it is determined from the training data \(D \).

The Korean names are in general composed of 2 ~ 5 consecutive syllables. That is, \(N = x_1, x_2, \ldots, x_m \), where the maximal length of a name is \(m \) and each syllable within a name is \(x \). Therefore, the probability of the the name \(N \) is

\[
P(N) = P(x_1) P(x_2 | x_1) \ldots P(x_m | x_1, \ldots, x_{m-1}).
\]

(2)

If we approximate \(P(x_i | x_1, \ldots, x_{i-1}) \) by its count, it is rewritten as

\[
P(x_i | x_1, \ldots, x_{i-1}) = \frac{C(x_1, \ldots, x_i)}{C(x_1, \ldots, x_{i-1})}
\]

(3)
Fig. 2. The general steps in machine translation systems.

![Diagram of machine translation steps]

where C is a counting function.

Since we consider a name as a sequence of syllables, it is considered to be an n-gram model. That is, a long name implies high dimensionality in this model. The probability in Equation (3) is easy to be 0 in high dimensionality. It leads to making $P(N)$ in Equation (2) zero. As a result, it gets impossible to distinguish the gender of a given name using probability. In order to solve this problem, this paper adopts the Back-off model proposed by Katz [4].

IV. OVERALL SYSTEM

When a module for determining the gender of names, it can be used as a subsystem for generating pronouns in Korean-English machine translation. Generally, as shown in Figure 2, the machine translation system consists of four steps: morphological analysis, syntax analysis, structure transformation, and target language generation [6]. Thus, the proposed method is used in the target language generation step.

For a given sentence, it first distinguishes the named entities. As a named-entity recognizer, we use the one developed in ETRI [8]. For each named entity found by ETRI NER, if it is a person, its gender is determined by the proposed method. According to the found gender, an appropriate pronoun is generated. Figure 3 depicts this process.

The “Determine Pronoun” step in Figure 3 is shown in more detail in Figure 4. Since this step is reached only when the named entity is a person, the target pronoun p can be one of he, she, and then. The first step is to look up the result of morphological analyzer in order to see if it is plural or not. If this entity is plural, p should be then. Otherwise, p is he when g is male. It is she when g is female.

V. EXPERIMENTS

A. Data Sets

For the evaluation of the method proposed in this paper, we collected names on personage databases which are available publicly on Web. The number of names collected in this way is . Among them, are man’s name. That is, 97.02% of the generally well-known people are men. This reflects Korean social characteristics that the social activity of women is weak.

However, it also causes a problem in classifying the gender of names by probability, since the imbalanced data distribution hurts the performance of most machine learning algorithms [2] In order to solve this problem, we manually collected additional 23,488 female names from Web. Finally, we could obtain the balanced data set, and Table I shows the simple statistics on this data set. The number of names in this table is obtained after removing the redundant ones. For instance, the number of female name is 23,923, but it shrinks to 12,145 after removing the redundant ones.

B. Compared Methods

In order to show the performance of the proposed method, we compare it with three other methods explained below. The easiest way to determine the gender of a name is to reply the majority gender in the corpus. According to Table I, when the system replies “Male” for any name, it will achieve 52.24% of accuracy. This is our baseline performance for this task.

The other simple method is to look up the name database. However, this method has two kinds of problems. First, it
C. Experimental Results

Table II shows the experimental results of the proposed method for determining gender of names. Table II shows the experimental results of the proposed method for determining gender of names.

\[
\begin{array}{|c|c|c|}
\hline
\text{Method} & \text{Accuracy} (%) \\
\hline
\text{Baseline} & 52.24 \\
\text{Lookup} & 64.11 \pm 0.46 \\
\text{Trigram} & 75.27 \pm 1.89 \\
\text{Proposed Method} & 81.49 \pm 1.56 \\
\hline
\end{array}
\]

The benefit of this method is that it can achieve more stable probability from a limited-sized corpus. However, its expressive power is weaker than that of the proposed method.

VI. Conclusion

In this paper, we have proposed a method for determining the gender of Korean names for Korean-English machine translation. The proposed method is based on the statistics computed with a collection of Korean names. The experiments, the proposed method gives 81.49% of accuracy, while the database looking-up achieves just 64.11%. That is, the proposed method improves 17.38% of accuracy over the simple looking-up. It implies that the proposed method is plausible for gender classification of Korean names in Korean-English machine translation systems.

ACKNOWLEDGMENT

This work was supported by the Korean Ministry of Education under the BK21-IT Program.

REFERENCES

