Artificial Neural Networks Application to Improve Shunt Active Power Filter

Rachid.Dehini, Abdesselam.Bassou, Brahim.Ferdi

Abstract—Active Power Filters (APFs) are today the most widely used systems to eliminate harmonics compensate power factor and correct unbalanced problems in industrial power plants. We propose to improve the performances of conventional APFs by using artificial neural networks (ANNs) for harmonics estimation. This new method combines both the strategies for extracting the three-phase reference currents for active power filters and DC link voltage control method. The ANNs learning capabilities to adaptively choose the power system parameters for both to compute the reference currents and to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter. To investigate the performance of this identification method, the study has been accomplished using simulation with the MATLAB Simulink Power System Toolbox. The simulation study results of the new (SAPF) identification technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords—Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion.

I. INTRODUCTION

Due to proliferation of power electronic equipment and nonlinear loads in power distribution systems, the problem of harmonic contamination and treatment take on great significance. These harmonics interfere with sensitive electronic equipment and cause undesired power losses in electrical equipment[1-8]. In order to solve and to regulate the permanent power quality problem introduce by the system, we have been used; which are simple and low cost. However, the use of passive filter has many disadvantages, such as large size, tuning and risk of resonance problems.

Lately, owing to the rapid improvement in power semiconductor device technology that makes high-speed, high-power switching devices such as power MOSFETs, MCTs, IGBTs, IGCTS, IEGTs etc. usable for the harmonic compensation modern power electronic technology, Active power filter (APF) have been considered as an effective solution for this issue, it has been widely used.

One of the most popular active filters is the Shunt Active Power Filter (SAPF) [2-6, 8]. SAPF have been researched and developed, that they have gradually been recognized as a workable solution to the problems created by non-linear loads. The functioning of shunt active filter is to sense the load currents and extracts the harmonic component of the load current to produce a reference current \(i^f\), a block diagram of the system is illustrated in Fig. 1. The reference current consists of the harmonic components of the load current which the active filter must supply. This reference current is fed through a controller and then the switching signal is generated to switch the power switching devices of the active filter such that the active filter will indeed produce the harmonics required by the load. Finally, the AC supply will only need to provide the fundamental component for the load, resulting in a low harmonic sinusoidal supply.

Generally, the effectiveness of (SAPF) depends on three design criteria: (i) design of power inverter; (ii) use of current controller’s types (iii) methods used to obtain the reference current. The presented work was oriented mostly on the latter criterion.

In order to determine harmonic and reactive component of load current, reference source current generation is needed. Thus, reference filter current can be obtained when it is subtracted from total load current. For better filter performance, generation of reference source current should be done properly. For this purpose, several methods such as pq-theory, dq-transformation, multiplication with sine function and Fourier transform have been introduced in literature [9-14].

Recently, some methods based on artificial intelligence have been applied. In order to improve processing detecting time of harmonic current. The past decade has seen a dramatic increase in interest Artificial Neural Networks (ANNs) which is characterized by its learning ability and high speed recognition but simple structure, the (ANNs) have been applied in many uses in the power electronic part of both machinery [16] and filters devices [17-24] where it have justified their effectiveness. The results obtained with ANNs are often better than those of traditional methods. Indeed, as a result of their capacities to optimize simultaneously their weights and biases in an on-line training process, they are able...
to adapt themselves to any system.

In this paper, a detection method using artificial neural network (ANN) is presented which can be utilized in both harmonic current detection from distorted wave and DC link control voltage. This method can precisely obtain the reference current of each phase. The learning rate can be regulated in a wide range with little affection on the performance with a simple structure and theory [17-24]. The performances of the Neural Method are evaluated under simulation and are compared with p-q theory.

II. REFERENCE SOURCE CURRENT GENERATION

The concept of instantaneous reactive power theory (p-q theory) method basically consists of a variable transformation from the a, b, c reference frame of the instantaneous power, voltage and current signals to the \(\alpha - \beta \) reference frame [13]. The instantaneous values of voltages and currents in the \(\alpha - \beta \) coordinates can be obtained from the following equations:

\[
\begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix} = [A]
\begin{bmatrix}
V_a \\
V_b \\
V_c
\end{bmatrix} = [A]
\begin{bmatrix}
i_a \\
i_b \\
i_c
\end{bmatrix}
\]

where \(A \) is the transformation matrix and is equal to:

\[
[A] = \begin{bmatrix}
1 & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{bmatrix}
\]

This transformation is valid if and only if \(V_a(t) + V_b(t) + V_c(t) = 0 \) and also if the voltages are balanced and sinusoidal. The instantaneous active and reactive powers in the \(\alpha - \beta \) coordinates are calculated with the following expressions:

\[
p(t) = V_a(t)i_a(t) + V_\alpha(t)i_\alpha(t) \\
q(t) = -V_a(t)i_\beta(t) + V_\beta(t)i_\alpha(t)
\]

The values of \(p \) and \(q \) can be expressed from Eqs.(3) and (4) in terms of the dc components plus the ac components, that is:

\[
p = \bar{p} + \tilde{p} \\
q = \bar{q} + \tilde{q}
\]

where:

\(\bar{p} \): is the dc component of the instantaneous power \(p \), and is related to the conventional fundamental active current.

\(\tilde{p} \): is the ac component of the instantaneous power \(p \), it does not have average value, and is related to the harmonic currents caused by the ac component of the instantaneous real power.

\(\bar{q} \): is the dc component of the imaginary instantaneous power \(q \), and is related to the reactive power generated by the fundamental components of voltages and currents.

\(\tilde{q} \): is the ac component of the instantaneous imaginary power \(q \), and is related to the harmonic currents caused by the ac component of instantaneous reactive power.

In order to compensate reactive power and current harmonics generated by nonlinear loads, the reference signal of the shunt active power filter must include the values of \(\tilde{p} \) and \(\tilde{q} \). [5] In this case the reference currents required by the SAPF are calculated with the following expression:
The final compensating currents components in a, b, c reference frame are the following:

$$
\begin{bmatrix}
 i_{ca}^* \\
 i_{cb}^* \\
 i_{cc}^*
\end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix}
 v_a \\
 v_\beta \\
 -v_a
\end{bmatrix} \begin{bmatrix}
 P_L \\
 \tilde{q}_L
\end{bmatrix}
$$

(7)

$$
\begin{bmatrix}
 i_{ca}^* \\
 i_{cb}^* \\
 i_{cc}^*
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & \frac{1}{2} \\
 -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
 -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix} \begin{bmatrix}
 i_{ca}^* \\
 i_{cb}^* \\
 i_{cc}^*
\end{bmatrix}
$$

(8)

The production of currents whether to eliminate the undesired harmonics or to compensate reactive power, but also to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter[8-12]. The storage capacity C absorbs the power fluctuations caused by the compensation of the reactive power, the presence of harmonics, and the active power control and also by the losses of the converter. The average voltage across the capacitor terminals must be kept at a constant value. The regulation of this voltage is made by absorbing or providing active power on the electrical network. The correction of this voltage must be done by adding the fundamental active current in the reference current of (SPAF) [30].

The (SAPF) control strategy involves not only the production of currents whether to eliminate the undesired harmonics or to compensate reactive power, but also to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter[8-12]. The storage capacity C absorbs the power fluctuations caused by the compensation of the reactive power, the presence of harmonics, and the active power control and also by the losses of the converter. The average voltage across the capacitor terminals must be kept at a constant value. The regulation of this voltage is made by absorbing or providing active power on the electrical network. The correction of this voltage must be done by adding the fundamental active current in the reference current of (SPAF) [30].

Fig.2. Block diagram for the instantaneous active and reactive power

Fig.3. Control of DC Voltage

To realize these objectives, a controller as shown in Figure.3 is added to regulate the capacitor dc voltage of the (SAPF). In this circuit, the actual dc capacitor voltage is detected and compared with the reference value, and the error is amplified then is added to the P_L, the output of high-pass filter in Figure 2. Therefore, active power allowed into the capacitor is been changed and the dc voltage is controlled.
III. NEURAL NETWORKS FOR REFERENCE SOURCE CURRENT AND DC VOLTAGE CONTROL

In this work, the p-q theory is modeled, as depicted in Fig. 4, by an artificial neural network (ANN) made up of two hidden layers with 12 neurons each, and one output layer with 3 neurons. The logarithmic activation function is the base of the two hidden layers neurons, and linear activation function for the output layer neurons.

The ANN in Fig. 4 has seven inputs \(V_{sa}, V_{sb}, V_{sc}, V_{dc}, i_{sa}, i_{sb}, i_{sc} \) and three outputs \(i^*_a, i^*_b, i^*_c \), as observed in the p-q theory. The model of the neurons of the hidden layers is represented in Fig.4, where each neuron has \(n \) inputs. This parameter varies in function of the chosen hidden layer, where \(n \) equals 7 if the neuron belongs to hidden layer 1, and \(n \) equals 12 if the neuron belongs to hidden layer 2. For the neurons of the output layer, \(n \) equals 12.

The adaptation of the weights (W) and bias (b) in the ANN, is based, first, on the computation of the mean square error (MSE) between the outputs of the PQ technique and those of the ANN, and secondly, on the execution of ‘Levenberg-Marquardt backpropagation’ algorithm [18-24].

IV. SIMULATION RESULTS

The performance of the proposed detection method using artificial neural network (ANN) was examined through simulations. The system model was implanted in Matlab / Simulink environment. The (SAPF) was designed to compensate harmonics caused by nonlinear loads. The system model parameters are shown in Table 1.

![Diagram of neural network](image)

Fig.4. Neural network for (p-q theory) modelling

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>SYSTEM PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Supply phase voltage U</td>
<td>220 V</td>
</tr>
<tr>
<td>Supply frequency f_s</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Filter inductor L_f</td>
<td>0.7 mH</td>
</tr>
<tr>
<td>DC link capacitor C_f</td>
<td>0.768474 mF</td>
</tr>
<tr>
<td>Vdc</td>
<td>850V</td>
</tr>
<tr>
<td>Smoothing inductor L_smooth</td>
<td>70 μH</td>
</tr>
</tbody>
</table>

A three-phase diode rectifier with an RL load was used as a harmonic producing load. The load value is (resistance was 10/3 Ω and the inductance 60 mH. or Load apparent power SL=82VA).
Fig. 5. (a) Simulated phase-a load current waveforms, (b) Simulated phase-a reference current waveforms, (c) Simulated phase-a supply current waveforms, (d) Simulated the supply voltage waveforms with a (p-q theory) method.

Fig. 6. (a) Simulated phase-a load current waveforms, (b) Simulated phase-a reference current waveforms, (c) Simulated phase-a supply current waveforms, (d) Simulated the supply voltage waveforms with a (ANN) method.
In simulations the two different identification methods were used. Because of the (ANNs) capacities to optimize simultaneously their weights and biases in an on-line training process; this approach improves the (SAPF) performance. The filtering result can be seen in Figure 5 and 6. The deformations have now been reduced and the harmonic distortion calculated up to 2.5 kHz (THD 2.5kHz) has been weakened. Although the filtering performance especially with the low order harmonics has been improved, this can be seen in Table II, where the THD calculated up to 2.5 kHz remains less than the case of

<table>
<thead>
<tr>
<th>Harmonic Supply Current Components</th>
<th>Isa(n)/Isa(1) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p-q theory)</td>
</tr>
<tr>
<td>5 19.59 0.37</td>
<td>0.28</td>
</tr>
<tr>
<td>7 13.56 0.43</td>
<td>0.37</td>
</tr>
<tr>
<td>11 8.06 0.17</td>
<td>0.04</td>
</tr>
<tr>
<td>13 6.48 0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>17 4.38 0.41</td>
<td>0.06</td>
</tr>
<tr>
<td>19 3.63 0.21</td>
<td>0.17</td>
</tr>
<tr>
<td>23 2.51 0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>25 2.08 0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>29 1.43 0.21</td>
<td>0.04</td>
</tr>
<tr>
<td>31 1.18 0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>35 0.82 0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>37 0.70 0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>41 0.56 0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>43 0.51 0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>47 0.46 0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>49 0.44 0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>THD 26.91 1.05</td>
<td>0.74</td>
</tr>
</tbody>
</table>

FIG. 7. HARMONIC SPECTRUM OF SUPPLY CURRENT PHASE ‘a’

FIG. 8. DC LINK VOLTAGE REGULATION COMPARISON BETWEEN (P-Q THEORY) AND (ANN)

TABLE III PERFORMANCE INDICES, SYSTEM WITH THE TWO METHODS

<table>
<thead>
<tr>
<th></th>
<th>(ANN) Case</th>
<th>(p-q theory) Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>0.1488</td>
<td>0.08598</td>
</tr>
<tr>
<td>overshoot</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Settling Time(s)</td>
<td>0.15</td>
<td>0.42</td>
</tr>
<tr>
<td>Steady-state Error</td>
<td>0.3280%</td>
<td>0.3301%</td>
</tr>
</tbody>
</table>
Figure 8 represents the controlled voltage in the borders of the condenser. We compared between the pro-posed approach (ANN) and the case of the PI controller which is incorporated in (p-q theory) as shown in Table III. It seems clearly that the PI controller in (p-q theory) is characterized by a very low Rising Time and Settling Time (Tr is equal to 0.08598 s, Ts is equal to 0.15 s) compared to the (ANN) case (Tr is equal to 0.1488 s, Ts is equal to 0.42 s). The former case presents acceptable results at the level of DC voltage control.

V. CONCLUSION

The work presented in this paper makes a significant contribution to identification and control strategies in order to improve the (SAPF) performance. The novel approach is based on intelligent neural techniques, has been proposed. The performance of the proposed (ANN) was verified through simulation studies with Matlab and confronted with classical technical. The complete (SAPF) structure has been implanted to compensate harmonics caused by nonlinear loads.

At this level, comparative studies between the neural approach and; one of the most conventional techniques used to extract the harmonic component of the load current to produce reference currents; (p-q theory) have been accomplished. The achieved results can be asserted that all the identifying objectives of the harmonic currents could be satisfied by the approach based on neural networks. However, the (p-q theory) merit is that the latter contains integrated (PI) controller, added to regulate the capacitor dc voltage of the (SAPF).

REFERENCES

[16] M. Ahmed “Sliding Mode Control For Switched Mode Power Supplies”, Thesis for the degree of Doctor of Science (Technology) to be presented with due permission for public examination and criticism in the auditorium 1382 at Lappeenranta University of Technology, Lappeenranta, Finland on the 14th of December 2004.at noon. Pages(s):32-34.
R.Dehini : received the stage license degree in electrical & engineering from the national high school of technical teachings (ENSET) ALGERIA. Currently, He is working toward the Doctorate degree. His interests are in electrical power quality.

A. Bassou : received the state engineer degree in Electronic Engineering in 1997 from the University of Abou Bekr Belkaid de (Tlemencen-Algeria) and the M.S. degree in 2000 from University of Djillali Liabes (Sidi Bel Abbes–Algeria). In 2006 he received the doctorate degree from University of Djillali Liabes (Sidi Bel Abbes–Algeria) (USTO), Algeria and currently holding the post of Assistant Professor. His current research and teaching interests are in the areas of Artificial Neural Networks, telecommunication and signal. Presently he is supervising doctoral students working in the field of telecommunication and Artificial Neural Networks.

B. Ferdi : received the stage engineer degree in electrical & engineering from the University of Boumerdes (INELEC), in 1991 and the MS degree in 2008 from Bechar University ALGERIA. Currently, He is working toward the Doctorate degree. His areas of interest are hybrid active power filters, applications of power electronics, and power quality improvement.