Development of a Simulator for Explaining Organic Chemical Reactions Based on Qualitative Process Theory

Alicia Y. C. Tang, Rukaini Hj. Abdullah, and Sharifuddin M. Zain

Abstract—This paper discusses the development of a qualitative simulator (abbreviated QRiOM) for predicting the behaviour of organic chemical reactions. The simulation technique is based on the qualitative process theory (QPT) ontology. The modelling constructs of QPT embody notions of causality which can be used to explain the behaviour of a chemical system. The major theme of this work is that, in a qualitative simulation environment, students are able to articulate his/her knowledge through the inspection of explanations generated by software. The implementation languages are Java and Prolog. The software produces explanation in various forms that stresses on the causal theories in the chemical system which can be effectively used to support learning.

Keywords—Chemical reactions, explanation, qualitative process theory, simulation

I. INTRODUCTION

In organic chemical reactions, one has to understand the many cognitive steps (the “mechanisms”) involved before a stable product is formed. Understanding these cognitive steps is among the many difficulties faced by chemistry students. Traditional chemistry educational software is inadequate in promoting understanding such as why and how things happen. These programs do not “explain” simply because the results are obtained through chaining of rules or by searching the reaction routes that have been pre-coded in software. Consequently, some students, particularly weak learners would require additional learning aids such as a software tool to assist them in their learning. In conventional approach, reaction prediction is performed by finding a route through searching the entire state space. Explanation generation is also a great challenge to this type of programming paradigm. Traditional chemistry software is therefore inadequate in promoting understanding such as why and how things happen. This work combines qualitative reasoning and ontologies in a simulation system, and generates explanations for learners from the system. In [12], “make-bond” and “break-bond” chemical bonding have been identified as two generic processes in the simulation of organic chemical reactions. From the analysis of various chemical reactions occurring under Sn1 and Sn2 mechanisms, the common set of chemical theories and behaviour for the generic processes have been identified, from which the model automation procedures are formulated. A set of QR algorithms used for the simulation of reactions have also been developed. The algorithms can cater for “select and sequence” ability, with the aid of the OntoRM ontology [13]. This paper will provide a few simulation results that serve as “explanation” to chemical phenomena related to organic reactions. Our approach for answer justification is based on causal reasoning. Overall, the issue of lack of explanation in chemistry software is addressed by embedding a causal explanation generator that produces explanation in various forms.

II. PREVIOUS WORK

QRiOM was motivated by a number of QR related systems reported in [3]-[11].

Fig. 1 depicts the software modules implemented in QRiOM. Table 1 describes the role of the main modules in the simulator. The knowledge-base has a two layer structure. The purpose of the lower layer is to provide chemical facts to the simulator. This is called chemical instances (or basic facts). Instances refer to chemical elements and their chemical properties that do not change over time. The upper layer is the chemistry ontology for reaction mechanisms simulation. This tier is called OntoRM. The ontology defines the requirements and constraints when suggesting a reaction mechanism for a chemical equation simulation.

A. Y. C. Tang is with the University of Tenaga Nasional, Selangor, Malaysia (phone: 603-8921-2336; e-mail: aliciaat@uniten.edu.my).
R. Abdullah is with the Department of Artificial Intelligence, Malaya University, Kuala Lumpur, Malaysia (email: rukaini@um.edu.my)
S. M. Zain is with the Department of Chemistry, Malaya University, Kuala Lumpur, Malaysia (e-mail: smzain@um.edu.my).
The chemical equation \((\text{CH}_3)_3C\text{–OH} + \text{HCl} \rightarrow (\text{CH}_3)_3C\text{–Cl} + \text{H}_2\text{O}\) will be used as the illustration example. The “thought processes” for the chemical equation is depicted in Fig. 2. It is necessary to build process models to describe the “thought” before reasoning or simulation can be initiated. Fig. 3 shows a process model represented in QPT. The QPT model can be used to reproduce the behaviour of the first reaction step for the “(CH₃)₃C–OH + HCl” reaction (refer to part (a) of Fig. 2). Fig. 4 shows the simulation algorithm implemented in QRiOM.
QPT-BASED SIMULATION ALGORITHM

Q_Simulation(QPT_model, OUTPUT)
1. Perform qualitative reasoning on the constructed QPT model
 1.1 Store the process’s entry conditions
 1.2 Store the directly influenced process quantity
 1.3 Keep track of the state transition (handled by the QSA module)
2. IF process_stopping_condition = true THEN
 Store propagated effects in special purpose data structures
 Store new individuals in the VIS
 Update the VIS
 END_IF
3. Update the substrate’s molecular structure (handled by the MUR module)
4. IF VIS contains reactive individuals THEN
 Determine a suitable chemical process
 Go to step 1
ELSE
 Retrieve final product from the VIS
 Call OntoRM to check for validity of the predicted product
 Call OntoRM to check for the possible order of process execution
 Write the final product and the proposed mechanism to OUTPUT
END_IF
5. Return OUTPUT

Fig. 4 The QPT-based simulation algorithm for chemical process reasoning

IV. PROTOTYPE DEVELOPMENT

Fig. 5 shows the problem solving model of QRiOM (i.e. the protocol to interact with the software tool) while Fig. 6 gives the main interface of the qualitative simulator. QRiOM development is fully event-driven and object-oriented.

A. Java Snippets for the Construction of QPT Models

QPT model serves the educational objective of “knowledge articulation” of various aspects of a chemical reaction. When inspecting a QPT process model, students have to articulate relationships between entities and dependencies. Fig. 7 shows the Java code that retrieves the chemical facts from the chemical KB in order to construct a QPT model while a screenshot of model inspection page is shown in Fig. 8.
B. Java Snippets for Implementing the Reasoning Engine

Quantity Space Analyzer (QSA) is one the important software modules in QRIOM. This module performs tasks such as updating and maintaining multiple data structures whenever an organic process is activated. Since the majority of chemistry students have difficulties identifying the right reacting units for processes activation, the tool will generate the whole set of reacting units (called “view pairs” in QPT)

Fig. 7 The Java code for retrieving chemical theories of reacting species for constructing QPT model

Fig. 8 The QPT model inspection page of QRiOM

used in the entire simulation thus informing the learner of the types of reacting species that activated a given chemical process (Fig. 9). The code for “view structure updating” is presented in Fig. 10. These results can then be used to generate the necessary reaction route for the entire simulation of a chemical equation.

Fig. 9 The choice of reacting units for each reaction step and the intermediates produced are displayed for further inspection

Fig. 10 The Java statements for updating the VIS in order to suggest the next organic process in the qualitative simulation environment

Fig. 11 gives the Java snippets for updating changes in parameters’ states. The values assigned to the chemical parameters during simulation are recorded in special purpose data structures for future retrieval. One such structure is the atom property table (Fig. 12).
take many forms. An example is causal accounts (or causality). Causal account is a kind of explanation that is consistent with our intuitions of how systems function. The explanation used by QRIOM is achieved by tracing the cause-effect propagation through the modelling constructs of QPT. For example, during each reaction simulation, a causal graph (Fig. 13) is generated that shows the use of the qualitative proportionality statements (or functional dependency) in the QPT models. Fig. 14 shows the Java code that generates causal graphs for explaining the cause-effect interaction among all the parameters.

Fig. 11 The code for updating the chemical parameters’ states of each atom during simulation

Fig. 12 The chemical states possessed by each reacting unit during simulation are stored in atom property table

Fig. 13 A causal graph generated by QRIOM that enables learners to examine the cause-effect relationships of chemical parameters during reasoning

Fig. 14 The Java code that keeps track of the values assigned to each parameter during reasoning. The set of values will be retrieved and formatted to graphical user interface

C. Java Snippets for Causal Graph Generator

Algorithms determine what the behaviour is, not an explanation of it. An explanation of system behaviour may
A qualitative simulation environment that enables students to articulate his/her knowledge through the inspection of explanations generated by software has been described. The implementation of the main modules in the reasoning engine has also been presented as a collection of Java snippets. QRiOM is the first chemistry education software that can generate multiple forms of textual explanation via QPT-based reasoning. QRiOM is viewed as useful and effective by chemistry learners, consistent with the fact that students' conceptual understanding is improved [14].

V. CONCLUSION

A qualitative simulation environment that enables students to articulate his/her knowledge through the inspection of explanations generated by software has been described. The implementation of the main modules in the reasoning engine has also been presented as a collection of Java snippets. QRiOM is the first chemistry education software that can generate multiple forms of textual explanation via QPT-based reasoning. QRiOM is viewed as useful and effective by chemistry learners, consistent with the fact that students' conceptual understanding is improved [14].

REFERENCES

Alicia Y.C. Tang is a senior lecturer at the University of Tenaga Nasional, Malaysia. She obtained her Ph.D. from University of Malaya in 2011. Her research fields include Qualitative Reasoning, Agent Technology, Data Mining, and AI in Education. Alicia is a member of APSCE, IEEE, and AIED Society.

Sharifuddin Mohd. Zain received his Ph.D. in 1995 from Imperial College, London, United Kingdom. He is an Associate Professor in the Department of Chemistry at University of Malaya, Malaysia. His research interests include Computational Chemistry, Application of Computers in Chemical Research and Education, Artificial Intelligence in Chemistry, Molecular Spectroscopy, and Environmental Modelling. Sharifuddin is leading several projects supported by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia. He is also a Regional Editor for the Journal of Global Environmental Engineering.

Rukaini Hj. Abdullah received her Ph.D. from University of Leeds, United Kingdom. She is attached to the Faculty of Computer Science and IT, University of Malaya. Her research interests are Natural Language Processing, AI in Education, Information Retrieval, and Computer Based Learning.

International Scholarly and Scientific Research & Innovation 5(9) 2011