Heat and Mass Transfer for Viscous Flow with Radiation Effect past a Nonlinearly Stretching Sheet

Kai-Long Hsiao

Abstract—In this study, an analysis has been performed for heat and mass transfer of a steady laminar boundary-layer flow of a viscous flow past a nonlinearly stretching sheet. Parameters n, Ec, k_0, Sc represent the dominance of the nonlinearly effect, viscous effect, radiation effect and mass transfer effect which have presented in governing equations, respectively. The similarity transformation and the finite-difference method have been used to analyze the present problem.

Keywords—Nonlinearly stretching sheet, heat and mass transfer, radiation effect, viscous effect.

NOMENCLATURE

A control surface area
B constant
C concentration
D diffusing coefficient
c_p specific heat at a constant pressure
Ec Eckert number
f dimensionless stream function
g dimensionless temperature
k_1 surface temperature parameter.
k fluid thermal conductivity
k_a dimensionless parameter related with thermal radiation
k' mean absorption coefficient
L reference length
m surface temperature parameter
n parameters related to the surface stretching speed.
N_r radiation parameter
q_r radiative heat flux
T temperature across the thermal boundarylayer

u, v velocity components along x and y directions, respectively
x, y Cartesian coordinates along the plate and normal to it, respectively
α thermal diffusivity
η dimensionless similarity variable
θ dimensionless temperature
μ dynamic viscosity
ν kinematic viscosity
ρ density
Pr Prandtl number
σ' Stefan-Boltzmann constant
τ shear stress

I. INTRODUCTION

The study of visco-elastic fluids had become of increasing importance in the last few years. Qualitative analyses of these studies have significant bearing on several industrial applications such as polymer sheet extrusion from a dye, drawing of plastic films etc. When the manufacturing process at high temperature and need cooling the stretching sheet. The flows maybe need visco-elastic fluids to produce a good effect to reduce the temperature from the sheet. And also, the fluids have processed many types of effects (i.e. magnetic force, buoyancy and mass diffusion) into the problem, and have become a hybrid system need to analysis by many different ways. It is a well-known fact in the studies of non-Newtonian fluid flows by Hartnett [1]. Rajagopal et al. [2] studied a Falkner-Skan flow field of a second-grade visco-elastic fluid. Massoudi and Ramezan [3] studied a wedge flow with suction and injection along walls of a wedge by the similarity method and finite-difference calculations. An excellent review of boundary layers in non-linear fluids was recently written by Rajagopal [4]. These are related studies to the present investigation about second-grade fluids. All of above are dealing with forced convection problems. Recently, Vajravelu and Soewono [5] had solved the fourth order non-linear systems arising in combined free and forced convection flow of a second order fluid, over a stretching sheet. The stretching sheet flow of a non-Newtonian fluid is also one of important flow fields in real world, Raptis [6] had studied heat

Kai-Long Hsiao is with Department of the Digital Technology and Information Applications, Diwan University, 87-1, Nansh Li, Madou Jen, Tainan, Taiwan, Republic of China (e-mail: hsiao.kailong@msa.hinet.net).
transfer of a visco-elastic fluid. On the other hand, researches in connection with visco-elastic fluid or second grade non-Newtonian fluids, but there are not the mixed convection flow [7]. Recently, the thermal boundary layer over a nonlinearly stretching sheet has become important for many studies toward the related problems. Rafael Cortell [8] studied effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Kechil and Hashim [9] studied series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field. Bataller [10] studied similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. Cortell [11] studied viscous flow and heat transfer over a nonlinearly stretching sheet. Vajravelu [12] studied viscous flow over a nonlinearly stretching sheet. Sanjayanand et al. [13], Cortell, Rafael [14] and Seddeek [15] had studied the heat and mass transfer problems about the viscoelastic boundary layer flow over a stretching sheet with magnetic effect, but not consider the mixed convection with radiation effect. In the present investigation, a study for heat and mass transfer problem has been processed.

II. THEORETICAL AND ANALYSIS

A. Flow Field Analysis

We consider the flow of an incompressible viscous fluid past a flat sheet coinciding with the plane y = 0, the flow being confined to y > 0. Two equal and opposite forces are applied along the x-axis so that the wall is stretched keeping the origin fixed. The steady two-dimensional boundary layer equations for this fluid, in the usual notation, are:

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = 0, \tag{1}
\]

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial u}{\partial y}, \tag{2}
\]

The boundary conditions to the problem are:

\[u(x) = Bx^n, \quad v = 0 \text{ at } y = 0, \quad u \to 0 \text{ as } y \to \infty. \tag{3}
\]

Defining new similarity variables as:

\[
\eta = y \sqrt{\frac{B(n+1)}{2v} x^n}, \quad u = Bx^n \Gamma'(\eta), \tag{4}
\]

\[
v = -\sqrt{\frac{B(n+1)}{2v} x^n} \left[\Gamma + \frac{n-1}{n+1} \eta \Gamma' \right],
\]

and substituting into Eqs. (1) and (2) give:

\[
\left(\Gamma' \right)^2 \left(\frac{2n}{n+1} \right) - f'''' - f''' = 0 \tag{5}
\]

where a prime denotes differentiation with respect to the independent similarity variable \(\eta \). The boundary conditions (3) and (4) become:

\[f(\eta) = 1 - \exp(-\eta), \tag{6}\]

and this exact solution is unique, while for the nonlinearly stretching boundary problem (i.e., \(n \neq 1 \)) there is no exact solution. The shear stress at the stretched surface is defined as

\[\tau_w = \mu \frac{\partial u}{\partial y} \tag{7}\]

and we obtain form (5) and (10)

\[\tau_w = \frac{B \mu}{2 \nu} \left[\Gamma + \frac{n-1}{n+1} \eta \Gamma' \right] \tag{8}\]

B. Heat Transfer Analyses

By using usual boundary layer approximations, the equation of the energy for temperature \(T \) in the presence of radiation and viscous dissipation, is given by:

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{\nu}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2 - \frac{1}{\rho c_p} \frac{\partial q_r}{\partial y} \tag{9}
\]

Using the Rosseland approximation for radiation [16], the radiative heat flux is simplified as

\[q_r = -\frac{4\sigma T^4}{3k} \frac{\partial T}{\partial y} \tag{10}\]

We assume that the temperature differences within the flow such as that the term \(T^4 \) may be expressed as a linear function of temperature. Hence, expanding \(T^4 \) in a Taylor series about \(T_e \) and neglecting higher-order terms we get

\[T^4 \approx 4T_e^4 - 3T_e^4 \tag{11}\]

In view to Eqs. (13) and (14), Eq. (15) reduces to

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{\nu}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\nu}{\rho c_p} \left(\frac{\partial u}{\partial y} \right)^2 \tag{12}
\]

where \(\alpha = \frac{k}{\rho c_p} \) is the thermal diffusivity; \(k_n = \frac{3N_r}{3N_r + 4} \) and

\[N_r = \frac{k_n}{4\sigma T_e^4} \tag{13}\]

is the radiation parameter. It is worth mentioning that the parameter \(N_r \) is physically more relevant that the similarity parameter \(k_n \) above introduced. For this reason, although throughout the paper the parameter \(k_n \) will be employed some time to simplify some equations, however, we take \(N_r \) instead of \(k_n \) as a governing parameter. If the thermal radiation’s effect is not considered in the energy equation, we have \(k_n = 1 \) in the above equation. Similarity solutions of Eq. (15) can be found by choosing appropriate boundary conditions. It is of a certain interest to consider separately the characteristics of the following two cases of main practical interest.

Here, the boundary conditions are:

\[T = T_e \left(= T_e + Ax \right) \text{ as } y = 0; \tag{14}\]

\[T \to T_e \text{ as } y \to \infty \tag{15}\]
Defining the non-dimensional temperature $\theta(\eta) = \frac{T - T_w}{T_o - T_w}$ and using Eqs. (5) and (16) into Eq. (15), we get:

$$\theta^* + \sigma_k \theta^* = \left(\frac{2k}{n+1} \right) \sigma_k \phi^* = -\sigma_k E_c x^{1-\alpha} (\phi^*)^2$$

and

$$\phi(0) = 1, \quad \phi(\infty) = 0,$$

where $E_c = \frac{C^2}{Ac_k}$ and $Pr = \frac{\nu}{\alpha}$

C. Mass Transfer Analyses

The steady boundary-layer equation for this flow, mass transfer, in usual notations, is:

$$\frac{\partial \phi}{\partial x} + \nu \frac{\partial \phi}{\partial y} = D \frac{\partial^2 \phi}{\partial y^2}$$

where C is the concentration, D is mass diffusivity, respectively. For the solutions of heat and mass transfer equations, it can be defined non-dimensional temperature and concentration variables as:

$$\phi(\eta) = \frac{C - C_w}{C_w - C_\infty} - \phi_{w}$$

This leads to the non-dimensional form of temperature and concentration equations as follows:

$$\phi^{*} + S_c \phi^{*} = 0$$

Where $Sc=\nu/D$ is the Schmidt number. The corresponding boundary conditions are:

$$\phi = 1 \text{ at } \eta = 0$$

$$\phi = 0 \text{ as } \eta \rightarrow \infty$$

the heating rate on the wall is:

$$q_w = -k \left(\frac{\partial \theta}{\partial y} \right)_{y=0} = -k(T_w - T_o) \sqrt{B(n+1)/2ux^{(n-1)/2}} \phi^{*}(0)$$

Once we know the $f(\eta)$ and its derivatives, one can calculate the values of the local skin friction at the surface from the following relations:

$$\tau_w = -\left(\frac{\partial u}{\partial \eta} \right)_{\eta=0} = \frac{Bw}{2ux^{(n-1)/2}} f''(0)$$

In addition, the local Nusselt number Nu_x has defined by:

$$Nu_x = \frac{hx}{k} = \frac{q_w}{T_o - T_w}$$

This expression has written as:

$$Nu_x = -\sqrt{B(n+1)/2ux^{(n-1)/2}} \phi^{*}(0)$$

The Sherwood number has defined by:

$$Sh_x = \frac{hx}{C_w-C_\infty} \left(\frac{\partial \phi}{\partial y} \right)_{y=0} = -\sqrt{B(n+1)/2ux^{(n-1)/2}} \phi^{*}(0)$$

III. NUMERICAL TECHNIQUE

In the present problem, the set of similar equations (13) to (17) are solved by a finite difference method. These ordinary differential equations have discretized by an accurate central difference method, and a computer program has been developed to solve these equations. To avoid errors in discretization and calculation processing and to ensure the convergence of numerical solutions, some conventional numerical procedures have been applied in order to choose a suitable grid size $\Delta \eta = 0.01 - 0.05$, a suitable η range and a direct gauss elimination method with Newton's method [17] is used in the computer program to obtain solutions of these difference equations. Hsiao et al. [18-23] Vajravelu. [24] are also using analytical and numerical solutions to solve the related problems. So, some numerical technique methods will be applied to the same area in the future. In this study, the program to compute finite difference approximations of derivatives for equal spaced discrete data. The code employ centered differences of $O(h^2)$ for the interior points and forward and backward differences of $O(h)$ for the first and last points, respectively. See Chapra and Canale, Numerical Methods for Engineers [25].

IV. RESULTS AND DISCUSSION

The model for grade-two fluids is used in this study. The effects of dimensionless parameters are included the nonlinearity number (n), the Prandtl number (Pr), the radiation parameter (k_0), the viscous dissipation number (Ec) and the Schmidt number (Sc) which are mainly interested of the study. Flow and temperature fields of the stretching sheet flow are analyzed by utilizing the boundary layer concept to obtain a set of coupled momentum equation, energy equation and mass equation. A similarity transformation is then used to convert the nonlinear, coupled partial differential equations to a set of nonlinear, coupled ordinary differential equations. A second-order accurate finite difference method is used to obtain solutions of these equations.

![Fig. 1 f vs. η for varies parameters](image-url)
values of non-linear parameter n. From the result could find the momentum effect decreasing with a larger n.

$$\theta \text{ vs. } \eta$$ for varies parameters

Fig. 2 depicts dimensionless temperature gradient profiles θ vs. η as $n=0.2$, $Sc=0.2$, $Ec=0.1$, $k_0=0.1$ and $Pr=0.01, 0.5, 1.0, 5.0, 10.0$. Figure 2 reveals that the increase of Prandtl number Pr results in the decrease of temperature distribution at a particular point of the flow region. This is because there would be a decrease of the thermal boundary layer thickness with the increase of values of Prandtl number Pr. From the result could find the thermal effect increasing with a larger Pr.

$$\phi \text{ vs. } \eta$$ for varies parameters

Fig. 3 depicts dimensionless temperature gradient profiles θ vs. η as $n=0.2$, $Sc=0.2$, $Ec=0.1$, $k_0=0.1$ and $Pr=0.01, 0.5, 1.0, 5.0, 10.0$. Figure 3 reveals that the increase of viscous dissipation number Ec results in the increase of dimensionless temperature distribution at a particular point of the flow region. This is because there would be an increase of the thermal boundary layer thickness with the decrease of values of viscous dissipation number Ec. From the result could find the thermal effect decreasing with a larger Ec.

$$\theta \text{ vs. } \eta$$ for varies parameters

Fig. 4 depicts dimensionless temperature gradient profiles θ vs. η as $n=0.2$, $Sc=0.2$, $Ec=0.1$, $k_0=0.1$ and $Pr=0.01, 0.5, 1.0, 5.0, 10.0$. Figure 4 reveals that the increase of radiation parameter k_0 results in the decrease of temperature distribution at a particular point of the flow region. This is because there would be a decrease of the thermal boundary layer thickness with the increase of values of radiation parameter k_0. From the result could find the thermal effect increasing with a larger k_0.

$$\phi \text{ vs. } \eta$$ for varies parameters

Fig. 5 depicts dimensionless concentration profiles ϕ vs. η as $Pr=2.0$, $k_0=0.1$, $Ec=0.1$ and $Sc = 0.01, 0.5, 1.0, 2.0, 3.0$. The effect of Schmidt number Sc on mass transfer process may be analysis from Figure 5 for the case of prescribed concentration and prescribed mass flux, respectively. Fig. 5 also shows that the increase of value of Schmidt number Sc results in the decrease of concentration distribution as a result of decrease of the concentration boundary layer thickness with the increased values of Sc. From the result could find the mass transfer effect increasing with a larger Sc.

V. CONCLUSION

There are some important conclusions as:

1. It seemed that the increase of Prandtl number Pr results in the decrease of temperature distribution at a particular point of the flow region.
2. It was found that when parameter n increased, the fluid velocity decreased. However it is observed that the effect of momentum in the boundary layer, which causes the temperature to decrease, while the presence of heat

V. CONCLUSION

There are some important conclusions as:

1. It seemed that the increase of Prandtl number Pr results in the decrease of temperature distribution at a particular point of the flow region.
2. It was found that when parameter n increased, the fluid velocity decreased. However it is observed that the effect of momentum in the boundary layer, which causes the temperature to decrease, while the presence of heat.
absorption effects caused reductions in the fluid temperature, which results in decreasing the fluid velocity. (3) It was become that the increase of Ec results in the increase of temperature distribution at a particular point of the flow region. (4) It is also observed that increase in thermal radiation parameter k0 produces a significant decrease in the thickness of the thermal boundary layer of the fluid and so as the temperature decreases in presence/absence of thermal conductivity parameter. (5) The effect of Schmidt number Sc on mass transfer process may show that the increase of value of Schmidt number Sc results in the decrease of concentration distribution as a result of decrease of the concentration boundary layer thickness with the increased values of Sc.

ACKNOWLEDGMENT
The author would like to thank the National Science Council R.O.C for the financial support through Grant NSC98-2221-E-434-009-.

REFERENCES

Kai-Long Hsiao has working as an associate professor at Diwan University in Taiwan as an associate professor. He had accomplished his master degree from the graduate school of Mechanical Engineering department of Chung Cheng Institute of technology in 1982 and obtained the PHD degree from the graduate school of Mechanical Engineering Department of Chung Yuan Christian University in 1999. His researches interesting have included fluid dynamics, heat transfer, solar energy and signal processing, etc. He also is a member of the editorial board of two Journals for Journal of Engineering and Technology Research (JETR) & African Journal of Mathematics and Computer Science Research (AJMCSR) since 2009.